AbbaszadehAfshar, F., Ayoubi Sh., & Jafari, A. (2017). Digital Soil Mapping of Soil Classes using Conventional Soil Maps in the Arid Region Southeastern Iran. J. Water and Soil Sci, 21(1): 239-253. (In Persian)
Adu-Poku, S. (2012). Comparing classification algorithms in data mining. (Thesis). Central Connecticut State University. pp: 24-26.
Ali Ehiai, M. (1993). Description of Soil Chemical Analysis Methods (Volume 1). Technical Journal 893. Soil and Water Research Institute. Agricultural Research and Education Organization, Tehran, Iran. (In Persian)
Ali Ehiai, M., & Behbahanizadeh A. A. (1993). Description of Soil Chemical Analysis Methods (Volume 2). Technical Journal 1024. Soil and Water Research Institute. Agricultural Research and Education Organization, Tehran, Iran. (In Persian)
Andronikov, V. L. & Dorbrolv’skiy, G. V. (1991). Theory and methods for the use of remote sensing in the study of soils. Mapping Sciences and Remote Sensing, 28(2), 92-101.
Angelini, M. E., Heuvelink, G. B. M., Kempen, B., Morrás, H. J. M. )2016(. Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma. 281, 102-118.
Banaii, M. H. )2001(. Map of Resources and Talents of Iranian Soils. Iran Soil and Water Research Institute, Tehran. (In Persian)
Barthold F. K., Wiesmeier, M., Breuer, L., Frede, H. G., Wu, J., & Blank, F. B. (2013). Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia. J. Arid Environ. (88), 194-205.
Bouma, J., Booltink, H., & Finke, P. (1996). Use of soil survey data for modeling solute transport in the vadose zone. Journal of environmental quality, 25(3), 519-526.
Breiman L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brungard C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards, Jr, T. C. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, (239), 68-83.
Buol, S. W., Southard, R. J., Graham, R. C., McDaniel, P. A. (2003). Soil Genesis and Classification. Iowa State University Press, 494 p.
Burrough P. A., Beckett, P. H. T., & Jarvis, M. G. (1971). The relation between cost and utility in soil survey. European Journal of Soil Science, 22(2), 368-381.
Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M., Christoforou, I. C., Bruggeman, A. )2017(. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization, Geoderma, Volume 285, Pages 35-49, https://doi.org/10.1016/j.geoderma.2016.09.019.
Campling, P., Gobin, A. & Feyen J. (2002). Logistic modeling to spatially predict the probability of soil drainage classes. Soil Science Society of America Journal, (66), 1390–1401.
Chen, S., Arrouays, D.,LeatitiaMulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A.C., Walter, C. )2022(. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review.
Geoderma, 409.
10.1016/j.geoderma.2021.115567.
Congalton, R.G. )1991(. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46.
Fernandes Coelho, F., Giasson, E., Campos, A. R., Tiecher, T., Ferreira Costa, J. J., Coblinski, J. A. )2021(. Digital soil class mapping in Brazil: a systematic review. Soil and Plant Nutrition, 78 (5).
Forghani, S. J., Pahlevanrad, M. R., Esfandiari, M., Mohammadi Torkashvand, A. (2022). Digital soil mapping of soil classes in floodplain and low relief lands (Case study: Hirmand county). Water and Soil Resources Conservation, 9(4). (In Persian)
Grabs, T., Seibert, J., Bishop, K., and Laudon, H. )2009(. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. J. Hydrol. 373: 15-23.
Grunwald, S. (2006). Environmental soil-landscape Modeling, Geomorphic Information Technologies and Pedometrics. Taylor and Francis Pub., USA.
Han, X., Liu, J., Shen, X., Liu, H., Li, X., Zhang, J., Wu, P., Liu, Y. )2022(. High relief yield strong topography-soil water-vegetation relationships in headwater catchments of southeastern China. Geoderma (428).
Hengl, T., Rossiter, D. G., & Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Geoderma, (120), 75–93.
Hengl, T., Toomanian, N., Reuter, H. I., & Malakouti, M. J. (2007). Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140(4), 417-427.
Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, (265), 62-77.
Johansson, U., König, R., Niklasson, L. (2010). Genetic rule extraction optimizing brier score. In: Pelikan, M., Branke, J. (Eds.), GECCO. ACM, pp. 1007–1014.
Kempen, B., Brus, D. J., Heuvelink, G. B., and Stoorvogel, J. J. )2009(. Updating the 1: 50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, 151(3-4): 311-326.
Khaledian, Y., Miller, B. A. (2020). Selecting appropriate machine learning method for digital soil mapping. Applied Mathematical Modelling, (81), 401-418.
Kim, J., Grunwald, S., Rivero, R. G., & Robbins, R. (2012). Multi-scale modeling of soil series using remote sensing in a wetland ecosystem. Soil Science Society of America Journal, 76 (6), 2327-2341.
Kuhn, M. (2018). Caret: classifcation and regression training. Astrophysics Source Code Library.
Lu, D., Mausel, P., Brondizio, E. & Moran, E. (2004). Change detection techniques. International journal of remote sensing, 25(12), 2365-2401.
Luoto, M., & Hjort J. (2005). Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, (67), 299-315.
MacMillan, R. A. (2003). LandMapR Software Toolkit C++ Version. LandMapper Environmental Solution. User Manual.
MacMillan, R. A., Pettapiece, W. W., Nolan, S. C., Goddard, T. W. (2000). Ageneric procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems, 113: 81-109.
Maghsodi, M., Rostaminia, M., Faramarzi, M., Keshavarzi, A., Rahmani, A., Mousavi, S. R. (2020). Digital mapping of soil family class using the machine learning approach (a case study: semi-arid lands in the west of Iran). Journal of water and soil science, Vol. 24, No, 2. )In Persian(
Mahler. P. J. (1970). Manual of multipurpose land classification. Rep. No. 212, Soil and Water Research Institute, Iran.
Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math (11): 431–441.
McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3-52.
Minasny, B., McBratney, A. B. (2016). Digital soil mapping: a brief history and some lessons. Geoderma 264, 301–311. https://doi.org/10.1016/j.
Monterio, M. E. C., Avalos, F. P., Pelegrino, M. P., Vilela, R. B., Junior, F. W. A., Bueno, I. T., Li, N., Silva, S. H. G., Giasson, E., Curi, N., Menezes, M. D. (2023). Digital mapping of soil classes in southeast Brazil: environmental covariate selection, accuracy, and uncertainty. Journal of South America Earth Sciences.
Moran, C. J., & Bui, E. N. (2002). Spatial data mining for enhanced soil map modelling. International Journal of Geographical Information Science, 16(6), 533-549.
Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E. and Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental monitoring and assessment, 188(3), 195.
Mousavi, S. R., Sarmadian, F., Rahmani, A. (2019). Modelling and prediction of soil classes using boosting regression tree and random forests machine learning algorithms in some part of Qazvin plain. Iranian Journal of Soil and Water Research, 50 (10), 2525-2538. (In Persian)
Olaya, V. I. (2004). A gentle introduction to SAGA GIS. The SAGA User Group eV, Gottingen,Germany, 208.
Padarian, J., Minasny, B., McBratney, A. B. (2019). Using deep learning for digital soil mapping. Soil 5, 79–89. https://doi.org/10.5194/soil-5-79-2019.
Rahimi Mashkaleh, M., Delavar, M. A., Jamshidi, M., Sharififar, A. (2023). Modelling spatial distribution of soil classes using machine learning algorithms in some parts of Zanjan province. Iranian Journal of Soil and water Research, 37 (2). (In Persian)
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, (71), 804-818.
Rossiter, D. (2005). Digital soil mapping: Towards a multiple-use Soil Information System. Análisis Geográficos (Revista del Instituto Geográfico" Augusín Codazzi"), 32(1), 7-15.
Rossiter, D. G. (2004). Digital soil resource inventories: status and prospects. Soil Use and Management, 20(3), 296-301.
Rostaminia, M., Rahmani, A., Mousavi, R., Taghizadeh, R. (2021). Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environmental Monitoring and Assessment, 193(185):1-17.
Salehi, M. H., & Khademi, H. (2008). Basics of soil mapping. Published by Isfahan University of Technologoy, pp:212. (In Persian)
Saurette, D. D., Berg, A. A., Laamrani, A., Heck, R., Gillespie, A., Voroney, P. (2022). Effects of sample size and covariate resolution on field-scale predictive digital mapping of soil carbon. Geoderma: 425.
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C. (2012). Soil Survey Staff. 2012. Field book for describing and sampling soils, Version 3.0. Lincoln: Natural Resources Conservation Service, National Soil Survey Center.
Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003). Predictive soil mapping: a review. Progress in Physical Geography, 27(2): 171-197.
Scull, P., Franklin, J. & Chadwick, O. A. (2005). The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modeling. 181: 1–15.
Sharififar, A., Sarmadian, F., Malone, B. P., Minasny, B. (2019). Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma, 350, 84–92.
Siqueira, D. S., Marques Jr, J., Pereira, G. T., Teixeira, D. B., Vasconcelos, V., Carvalho Junior, O. A., Martins, E. S. (2015). Detailed mapping unit design based on soil-landscape relation and spatial variability of magnetic susceptibility and soil color. Catena, 135, 149-162.
Soil Survey Staff, (2022). Keys to Soil Taxonomy, 13th ed. U. S. Department of Agriculture, Natural Recourses Conservation Service.
Taghizadeh-Mehrjardi, R., Sarmadian, F., Omid, M., Toomanian, N., Rousta, M. J., & Rahimian, M. H. (2015). Digital mapping of soil classes using different data mining techniques in Ardakan region, Yazd province.
Journal of Agricultural Engineering. 37(2): 101-115. (
In Persian)
Taghizadeh-Mehrjardi, R., Minasny, B., Toomanian, N., Zeraatpisheh, M., Amirian-Chakan, A., Triantafilis, J. (2019). Digital Mapping of Soil Classes Using Ensemble of Models in Isfahan Region, Iran. Soil System, (3, 37). https://doi.org/10.3390/soilsystems3020037
Tiwari, S. K., Saha, S. K., & Kumar, S. (2015). Prediction modeling and mapping of soil carbon content using artificial neural network, hyperspectral satellite data and field spectroscopy. Advances in Remote Sensing, 4(01), 63.
Western, A. W. (2004). Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 286: 1-4. 113-134.
Witten, I. H., Frank, E., Hall, M. A. (2011). Data mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington.
Zhu, X., Hudson, B., Burt, J., Lubich, K., & Simonson, D. (2001). Soil Mapping Using GIS Expert Knowledge and Fuzzy Logic. Journal of Soil Science Society of America, (65), 1463-1472.