Adeyeye, O. A., Ikpokonte, E. A., & Arabi, S. A., (2019). GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. The Egyptian Journal of Remote Sensing and Space Science, 22 (2), 175–181. https://doi.org/10.1016/j.ejrs.2018.04.003.
Al-Djazouli, M. O., Elmorabiti, K., Rahimi, A., Amellah, O., & Fadil, O. A. M. (2021). Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: a case of Waddai, eastern Chad. GeoJournal, 86, 1881–1894. https://doi.org/10.1007/s10708-020-10160-0.
Arnous, M. O., El-Rayes, A. E., Geriesh, M. H., Ghodeif, K. O., & Al-Oshari, F. A. (2020). Groundwater potentiality mapping of tertiary volcanic aquifer in IBB basin, Yemen by using remote sensing and GIS tools. Journal of Coastal Conservation, 24 (3), https://doi.org/ 10.1007/s11852-020-00744-w.
Awan, U. K. & Ismaeel, A. (2014). A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of hydrology, 519(27), 1368-1382. https://doi.org/10.1016/j.jhydrol.2014.08.049.
Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regionalscale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrologicaal Processes, 30 (23), 4420-4433. https://doi.org/10.1002/hyp.10933.
Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676. https://doi.org/10.1016/j.ejrh.2020.100676.
Bhowmick, A., & Ojha, J. R., (2019). Integrated GIS and remote sensing techniques for geospatial analysis of groundwater potential zones of Bilate river catchment, main Ethiopian Rift valley. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8 (6), 334–342.
Anonymous. (2004). Rehabilitation Studies of the Sefidroud irrigation and drainage network, Gilan. Gilan Regional Water Authority, Pandam Consulting Engineers, Volume 10. (In Persian)
Anonymous. (2006). Quantitative and qualitative modeling of the aquifer and integration of surface water and groundwater in the Astana-Kuchsefahan study area. Ministry of Energy, Gilan Regional Water Authority, Department of Basic Studies of Water Resources, Kamand Ab Consulting Engineers. (In Persian)
Anonymous. (2009). Guidelines for estimating the subsurface drainage coefficient in irrigated fields in arid and semi-arid areas. Deputy of Strategic Planning and control of the President's Office, No. 492. (In Persian)
Anonymous. (2014). Study of plains using quantitative and qualitative measurement networks in the Astana-Kuchsefahan study area. Iran Water Resources Management Company, Gilan Regional Water Authority, Department of Basic Studies of Water Resources, Toula Rood Gil Consulting Engineers. (In Persian)
Bizhanimanzar, M., Leconte, R., & Nuth, M. (2020). Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using Conceptual and Physically Based Models: A Model Comparison Study. Water, 12(2), 363. https://doi.org/10.3390/w12020363.
Chung, I. M., Kim, N. W., Lee, J. & Sophocleous, M. (2010). Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeology Journal, 18, 1253-1264. https://doi.org/10.1007/s10040-010-0593-1.
Crosbie, R. S., Peeters, L. J., Herron, N., McVicar, T. R. & Herr, A. (2018). Estimating groundwater recharge and its associated uncertainty: use of regression kriging and the chloride mass balance method. Journal of hydrology, 561: 1063-1080. https://doi.org/10.1016/j.jhydrol.2017.08.003.
Dar, T., Rai, N., & Bhat, A. (2020). Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology, and Landscapes, 5(4), 292-307.https://doi. org/10.1080/24749508.2020.1726562.
Das, N., & Mukhopadhyay, S. (2018). Application of Multi-Criteria Decision Making Technique for the Assessment of Groundwater Potential Zones: A Study on Birbhum District, West Bengal, India. Environment, Development and Sustainability, 22, 931–955. https://doi.org/10.1007/s10668-018-0227-7.
Dekongmen, B. W., Anornu, G. K., Kabo-Bah, A. T., Larbi, I., Sunkari, E. D., Dile, Y. T., Agyare, A., & Gyamfi, C. (2022). Groundwater recharge estimation and potential recharge mapping in the Afram Plains of Ghana using SWAT and remote sensing techniques. Groundwater for Sustainable Development, 17: 100741. https://doi.org/10.1016/j.gsd.2022.100741.
Doble, R. C., Pickett, T., Crosbie, R. S., Morgan, L. K., Turnadge, C., & Davies, P. J. (2017). Emulation of recharge and evapotranspiration processes in shallow groundwater systems. Journal of hydrology, 555, 894–908. https://doi.org/10.1016/j.jhydrol.2017.10.065.
Donigian, A. S. (2000). HSPF Training Workshop Handbook and CD, Lecture 19, Calibration and verification Issues, Slide L19-22. EPA Headquarters, Washington Information Center, Presented and prepared for U.S. EPA, Office of Water, Office of Science and Technology, Washington, DC.
Fontaine, T. A., Cruickshank, T. S., Arnold, J. G. & Hotchkiss, R. H. (2002). Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal Hydrology, 262 (1-4), 209-223. https://doi.org/10.1016/S0022-1694(02)00029-X.
Gemitzi, A., Ajami, H. & Richnow, H. H. (2017). Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data – Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology, 546:1–13. https://doi.org/10.1016/j.jhydrol.2017.01.005.
Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., & Srinivasan, R. (2015). A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software, 73, 103–11. https://doi.org/10.1016/j.envsoft.2015.08.011.
Kim, N., Chung, I., Won, Y. & Arnold, J. (2008). Development and application of the integrated SWAT-MODFLOW model. Journal of hydrology, 356(1-2), 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024.
Loukika, K. N., Venkata Reddy, K., Durga Rao, K. H. V., & Singh, A. (2020). Estimation of Groundwater Recharge Rate Using SWAT MODFLOW Model. Applications of Geomatics in Civil Engineering, Lecture Notes in Civil Engineering, 33, 143–154. https://doi.org/10.1007/978-981-13-7067-0_10.
McDonald, M. G. & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water- Resources Investigations, book 6, chap. A1, 586 p.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153
Mosasea, E., Ahiablame, L., Park, S., & Bailey, R. (2019). Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundwater for Sustainable Development, 9, 100260. https://doi.org/10.1016/j.gsd.2019.100260.
Naghibi, S. A., Pourghasemi, H. R., & Abbaspour, K. (2018). A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131 (3–4), 967–984. https://doi.org/ 10.1007/s00704-016-2022-4.
Nazarieh, F., Ansari, H., Ziaei, A. N., Davari, k., & Izadi, A. A. (2018). Estimation of the Recharge spatiotemporal pattern by Distribute PRMS model (Case study: Neishaboor watershed). Iran-Water Resources Research. 14(1): 226-238. (In Persian)
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J.R. (2011). Soil and water assessment tool theoretical document version 2009. Texas water resource institute.
Ntona, M. M., Busico, G., Mastrocicco, M., & Kazakis, N. (2022). Modeling groundwater and surface water interaction: An overview of current status and future challenges. Science of The Total Environment, 846, 157355.
https://doi.org/10.1016/j.scitotenv.2022.157355.
Pirmoradian, N., & Davatgar, N. (2019). Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop. Agricultural water management, 213, 97-106. https://doi.org/10.1016/j.agwat.2018.10.003.
Raja, O., Parsinejad, M., & Tajrishy, M. (2022). Simulation of Groundwater Balance Using Integrated Surface and Groundwater SWAT-MODFLOW-NWT Model (Case Study: Mahabad Plain). Journal of water and soil, 36(1), 31-52. https://doi.org/10.22067/JSW.2022.74890.1138. (In Persian)
Saadatpour, A., Alizadeh, A., Ziaei, A.N., & Izady, A. (2019). Integrated Surface and Groundwater Flow Modeling in Neishaboor Watershed with SWAT-MODFLOW. Journal of water and soil, 33(4), 521-536. https://doi.org/10.22067/JSW.V0I0.74658. (In Persian)
Waseem, M., Kachholz, F., Klehr, W., & Tränckner, T. (2020). Suitability of a Coupled Hydrologic and Hydraulic Model to Simulate Surface Water and Groundwater Hydrology in a Typical North-Eastern Germany Lowland Catchment. Applied sciences, 10(4), 1281. https://doi.org/10.3390/app1004128.