Achal, V., Mukherjee, A. Basu, P.C., & Reddy, M. S. (2009). Strain improvement of
Sporosarcina pasteurii for enhanced urease and calcite production.
Journal of Industrial Microbiology and Biotechnology, 36, 981-988.
https://doi.org/10.1007/s10295-009-0578-z.
Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press.
Ali, A., Wu, Z. Z., Li, M., & Su, J. F. (2021). Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by
Acinetobacter H12 in a quartz sandfilled biofilm reactor.
Bioresource Technology, 333, 125154.
https://doi.org/10.1016/j.biortech.2021.125154
Al-Thawadi, SM. (2008). High strength in situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Ph.D. thesis. Perth Western Australia. Mudroch University. 264.
Ansari, A., Peña-Bahamonde, J., Fanourakis, S. K., Hu, Y., & Rodrigues, D. F. (2020). Microbially-induced mineral scaling in desalination conditions: Mechanisms and effects of commercial antiscalants.
Water research,
179, 115863.
https://doi.org/10.1016/j.watres.2020.115863.
APHA, AWWA, WEF. (1998). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
Burt, C. D., Cabrera, M. L., Rothrock Jr, M. J., & Kissel, D. E. (2018). Urea hydrolysis and calcium carbonate precipitation in gypsum‐amended broiler litter. Journal of Environmental Quality, 47(1), 162-169. https://doi.org/10.2134/jeq2017.08.0337.
Chen, C. L., Park, S. W., Su, J. F., Yu, Y. H., Heo, J. E., Kim, K. D., & Huang, C. (2019). The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats).
Science of the Total Environment,
693, 133605.
https://doi.org/10.1016/j.scitotenv.2019.133605.
Deng, L., Liu, Y., Huang, T., & Sun, T. (2016). Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals.
Chemical Engineering Journal,
287, 83-91.
https://doi.org/10.1016/j.cej.2015.11.011.
Farhangi, M. B., Ghasemzadeh, Z., Ghorbanzadeh, N., Khalilirad, M., & Unc, A. (2021). Phosphate removal from landfill leachate using ferric iron bioremediation under anaerobic condition. Journal of Material Cycles and Waste Management, 23, 1576–1587. https://doi.org/10.1007/s10163-021-01239-y
Ganendra, G., De Muynck, W., Ho, A., Arvaniti, E. C., Hosseinkhani, B., Ramos, J. A., Rahier, H., & Boon, N. (2014). Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP. Applied and Environmental Microbiology, 80(15), 4659-4667. https://doi.org/10.1128/AEM.01349-14.
Gogoi, S., Nath, S. K., Bordoloi, S., & Dutta, R. K. (2015). Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.
Journal of Environmental Management,
152, 132-139.
https://doi.org/10.1016/j.jenvman.2015.01.031.
Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., & Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement.
Journal of Cleaner Production,
319, 128782.
https://doi.org/10.1016/j.jclepro.2021.128782.
He, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019). Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism.
Science of the Total Environment,
688, 184-198.
https://doi.org/10.1016/j.scitotenv.2019.06.175.
Huang H, Xiao D, Zhang Q, Ding L (2014) Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191–198. https:// doi. org/ 10. 1016/j. jenvm an. 2014. 06. 021.
Kang, C. H., Han, S. H., Shin, Y., Oh, S. J., & So, J. S. (2014). Bioremediation of Cd by microbially induced calcite precipitation. Applied Biochemistry and Biotechnology, 172, 2907-2915. https://doi.org/10.1007/s12010-014-0737-1.
Kang, S., Seo, J. T., Park, S. H., Jung, I. Y., Lee, C. Y., & Park, J. W. (2019). Qualitative analysis on crystal growth of synthetic hydroxyapatite influenced by fluoride concentration.
Archives of Oral Biology,
104, 52-59.
https://doi.org/10.1016/j.archoralbio.2019.05.022.
Khalil, C., Al Hageh, C., Korfali, S., & Khnayzer, R. S. (2018). Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon.
Chemosphere,
208, 1-13.
https://doi.org/10.1016/j.chemosphere.2018.05.151.
Lacson, C. F. Z., Lu, M. C., & Huang, Y. H. (2021). Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management-An overview.
Journal of Cleaner Production,
280, 124236.
https://doi.org/10.1016/j.jclepro.2020.124236.
Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH.
Construction and Building Materials,
273, 121729.
https://doi.org/10.1016/j.conbuildmat.2020.121729.
Li, F., Jin, J., Shen, Z., Ji, H., Yang, M., & Yin, Y. (2020). Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@ mSiO2@ mLDH composites as sorbents.
Journal of Hazardous Materials,
388, 121734.
https://doi.org/10.1016/j.jhazmat.2019.121734.
Liu, J., Su, J., Ali, A., Wang, Z., & Zhang, R. (2022). Potential of a novel facultative anaerobic denitrifying Cupriavidus sp. W12 to remove fluoride and calcium through calcium bioprecipitation.
Journal of Hazardous Materials,
423, 126976.
https://doi.org/10.1016/j.jhazmat.2021.126976.
Liu, J., Peng, Y., Li, C., Gao, Z., & Chen, S. (2021). A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China.
Ecotoxicology and Environmental Safety,
207, 111512.
https://doi.org/10.1016/j.ecoenv.2020.111512.
Maity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P., Bundschuh, J., & Chen, C. Y. (2018). Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics.
Environmental Nanotechnology, Monitoring & Management,
9, 18-28.
https://doi.org/10.1016/j.enmm.2017.11.001.
Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., & Asakura, H. (2021). Treatment of landfill leachate with different techniques: an overview.
Water Reuse,
11(1), 66-96.
https://doi.org/10.2166/wrd.2020.079.
Mukherjee, S., Sahu, P., & Halder, G. (2017). Microbial remediation of fluoride-contaminated water via a novel bacterium
Providencia vermicola (KX926492).
Journal of Environmental Management,
204, 413-423.
https://doi.org/10.1016/j.jenvman.2017.08.051.
Nath, S. K., & Dutta, R. K. (2010). Enhancement of limestone defluoridation of water by acetic and citric acids in fixed bed reactor. Clean–Soil, Air, Water, 38(7), 614-622. https://doi.org/10.1002/clen.200900209.
Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil.
Ecological Engineering,
153, 105885.
https://doi.org/10.1016/j.ecoleng.2020.105885.
Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., ... & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil.
Journal of Hazardous Materials,
400, 123116.
https://doi.org/10.1016/j.jhazmat.2020.123116.
Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Theory of Microbial Carbonate Precipitation and Its Application in Restoration of Cement‐based Materials Defects. Chinese Journal of Chemistry, 28(5), 847-857. https://doi.org/10.1002/cjoc.201090156.
Qin, W., Wang, C. Y., Ma, Y. X., Shen, M. J., Li, J., Jiao, K., Tay, E.R., & Niu, L. N. (2020). Microbe‐mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Advanced Materials, 32(22), 1–39. https://doi.org/10.1002/adma.201907833.
Rahman, Z. (2020). An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application.
Journal of Hazardous Materials,
396, 122682.
https://doi.org/10.1016/j.jhazmat.2020.122682.
Rajasekar, A., Moy, C. K., Wilkinson, S., & Sekar, R. (2021). Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. Plos One, 16(7), e0254676. https://doi.org/10.1371/journal.pone.0254676.
Shariatmadari, N., Askari Lasaki, B., Eshghinezhad, H., & Alidoust, P. (2018). Effects of landfill leachate on mechanical behaviour of adjacent soil: a case study of Saravan landfill, Rasht, Iran. International Journal of Civil Engineering, 16, 1503-1513. https://doi.org/10.1007/s40999-018-0311-2.
Sposito, G. (2008). The chemistry of soils. Oxford university press.
Sternitzke, V., Kaegi, R., Audinot, J. N., Lewin, E., Hering, J. G., & Johnson, C. A. (2012). Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer.
Environmental Science & Technology,
46(2), 802-809.
https://doi.org/10.1021/es202750t.
Su, J. F., Zhang, H., Huang, T. L., Hu, X. F., Chen, C. L., & Liu, J. R. (2019). The performance and mechanism of simultaneous removal of fluoride, calcium, and nitrate by calcium precipitating strain Acinetobacter sp. H12.
Ecotoxicology and Environmental Safety,
187, 109855.
https://doi.org/10.1016/j.ecoenv.2019.109855
Tang, S., Chang, X., Li, M., Ge, T., Niu, S., Wang, D., Jiang, Y.C., & Sun, S. (2021). Fabrication of calcium carbonate coated-stainless steel mesh for efficient oil-water separation via bacterially induced biomineralization technique.
Chemical Engineering Journal,
405, 126597.
https://doi.org/10.1016/j.cej.2020.126597.
Terzis, D., & Laloui, L. (2019). A decade of progress and turning points in the understanding of bio-improved soils: A review.
Geomechanics for Energy and the Environment,
19, 100116.
https://doi.org/10.1016/j.gete.2019.03.001.
Van Langerak, E. P. A., Hamelers, H. V. M., & Lettinga, G. (1997). Influent calcium removal by crystallization reusing anaerobic effluent alkalinity.
Water Science and Technology,
36(6-7), 341-348.
https://doi.org/10.1016/S0273-1223(97)00541-6.
Wang, Z., Su, J., Ali, A., Zhang, R., Yang, W., Xu, L., & Zhao, T. (2021). Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways.
Journal of Hazardous Materials,
416, 125914.
https://doi.org/10.1016/j.jhazmat.2021.125914.
Wang, Z., Su, J., Ali, A., Zhang, R., Yang, W., Xu, L., Shi, J., & Gao, Z. (2022). Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation.
Science of the Total Environment,
806, 150341.
https://doi.org/10.1016/j.scitotenv.2021.150341.
Wimalasiri, A. V. K., Fernando, M. S., Williams, G. R., Dissanayake, D. P., de Silva, K. N., & de Silva, R. M. (2021). Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite.
Materials Chemistry and Physics,
257, 123712.
https://doi.org/10.1016/j.matchemphys.2020.123712
Yan, H., Han, Z., Zhao, H., Pan, J., Zhao, Y., Tucker, M. E., Zhou, J.X., Yan, X.Y., Yang, H.Y., & Fan, D. (2020). The bio-precipitation of calcium and magnesium ions by free and immobilized Lysinibacillus fusiformis DB1-3 in the wastewater.
Journal of Cleaner Production,
252, 119826.
https://doi.org/10.1016/j.jclepro.2019.119826
Yin, T., Lin, H., Dong, Y., Li, B., He, Y., Liu, C., & Chen, X. (2021). A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization.
Journal of Hazardous Materials,
401, 123269.
https://doi.org/10.1016/j.jhazmat.2020.123269.