Beersma, J. J., & Buishand, T. A. (2004). Joint probability of precipitation and discharge deficits in the Netherlands. Water Resources Research, 40(12),1-12.
Eghdami, M., & Barros, A.P. (2019). Extreme orographic rainfall in the eastern Andes tied to cold air intrusions. Frontiers in Environmental Science, 7, 101.
Erfani, A., Babaeian, I., & Entezari, A. (2020). ERA-Interim. Journal of Climate Research, 1398(38), 77-92.
Fahimirad, Z., & Shahkarami, N. (2021). The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions. Water Resources Management, 35(12), 3969-3993.
Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140-145.
Faridzad, M., Yang, T., Hsu, K., Sorooshian, S., & Xiao, C. (2018). Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal of Hydrology, 563, 123–142.
Fooladi, M., Golmohammadi, M. H., Rahimi, I., Safavi, H. R., & Nikoo, M. R. (2023). Assessing the changeability of precipitation patterns using multiple remote sensing data and an efficient uncertainty method over different climate regions of Iran. Expert Systems with Applications, 221, 119788.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., & Gudmundsson, L. (2019). GRUN:an observation-based global gridded runoff dataset from 1902 to 2014. Earth System Science Data, 11(4), 1655-1674.
Hao, Z., & AghaKouchak, A. (2013). Multivariate standardized drought index: a parametric multi-index model. Advances in Water Resources, 57, 12-18.
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., ... & Zuo, H. (2018). Operational global reanalysis: progress, future directions and synergies with NWP. European Centre for Medium Range Weather Forecasts. Reading, UK.
Hoseeni, Z. S., Moghaddasi, M., & Paimozd, S. (2022). Accuracy assessment of ECMWF datasets in prediction of climate data and drought monitoring of Garechai basin of Markazi Province. Iranian Journal of Soil and Water Research, 53(4), 715-732 (In persion).
Hosseini, Z. S., Moghaddasi, M., & Paimozd, S. (2023). Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches. Water Resources Management, 37(3), 1125-1151.
Hosseini-Moghari, S.M., Araghinejad, S., & Ebrahimi, K. (2018). Spatio-temporal evaluation of global gridded precipitation datasets across Iran. Hydrological Sciences Journal ,63 (11), 1669–1688.
Kim, H., Watanabe, S., Chang, E. C., Yoshimura, K., Hirabayashi, J., Famiglietti, J., & Oki, T. (2017). Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1). Data Integration and Analysis System (DIAS).
Li, Q., Li, P., Li, H. & Yu, M. (2015). Drought assessment using a multivariate drought index in the Luanhe River basin of Northern China. Stochastic Environmental Research and Risk Assessment, 29(6), 1509-1520.
McKee, T.B., Doesken, N.J. & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, California, USA. 17:179-183.
Mohammadi Ghaleni, M., & Sharafi, S. (2022). Evaluation of CRU TS4. 05 and ERA5 Datasets Accuracy to Precipitation, Temperature and Potential Evapotranspiration in Different Climates across Iran. Iranian Journal of Irrigation & Drainage, 16(5), 879-890 (In persion).
Morid, S., Smakhtin, V. and Moghaddasi, M. (2006). Comparison of Seven Meteorological Indices for Drought in Iran. International Journal of Climatology, 26, 971-985.
Motevali Bashi Naeini, E., Akhoond-Ali. A.M., Radmanesh, F., Koupai, J.A, & Soltaninia, S. (2021). Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions under Climate Change Condition. Water Resources Management, 35(14), 4855-4875.
Naderi, K., Moghaddasi, M., & Shokri, A. (2022). Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change. Water Resources Management, 36(8), 2865-2888.
Nazeri Tahroudi, M., Ramezani, Y., De Michele, C. & Mirabbasi, R. (2020). A new method for joint frequency analysis of modified precipitation anomaly percentage and streamflow drought index based on the conditional density of copula functions. Water Resources Management, 34(13), 4217-4231.
Palmer, W.C. (1965). Meteorological Drought. Department of Commerce, Weather Bureau., Washington, DC, 58 pp.
Pom´eon, T., Jackisch, D., & Diekkrüger, B. (2017). Evaluating the performance of remotely sensed and reanalyzed precipitation data over west Africa using HBV light. Journal of Hydrology, 547, 222–235.
Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., & Kim, G.-K. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24, 3624–3648.
Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381-394.
Saemian, P., Tourian, M. J., AghaKouchak, A., Madani, K., & Sneeuw, N. (2022). How much water did Iran lose over the last two decades?. Journal of Hydrology: Regional Studies, 41, 101095.
Salman, S.A., Shahid, S., Ismail, T., Al-Abadi, A.M., Wang, X.j., & Chung, E.S. (2019). Selection of gridded precipitation data for Iraq using compromise programming. Measurement ,132, 87–98.
Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2).
Su, F., Hong, Y., & Lettenmaier, D.P. (2008). Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. Journal of Hydrometeorology, 9 (4), 622–640.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56 (1), 79–107.
Tsakiris, G., & Vangelis, H. J. E. W. (2005). Establishing a drought index incorporating evapotranspiration. European Water, 9(10), 3-11.
Tsiros, I. X., Nastos, P., Proutsos, N. D., & Tsaousidis, A. (2020). Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900–1997). Atmospheric Research, 240, 104914.
United Nations Educational, Scientific and Cultural Organization. (1979). Map of the world distribution of arid regions: map at scale 1:25,000,000 with explanatory note, MAB Technical Notes 7. UNESCO, Paris.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718.
Won, J., Choi, J., Lee, O. & Kim, S. (2020). Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment, 744, 140701.
Xu, H., Xu, C.Y., Chen, S., & Chen, H. (2016). Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. Journal of Hydrology, 542, 343–356.
Yang, J., Chang, J., Wang, Y., Li, Y., Hu, H., Chen, Y., ... & Yao, J. (2018). Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. Journal of Hydrology, 557, 651-667.
Yevjevich, V. M. (1967). Objective approach to definitions and investigations of continental hydrologic droughts, An (Doctoral dissertation, Colorado State University. Libraries).
Zhu, G. Y., He, L. J., Ju, X. W., & Zhang, W. B. (2018). A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEA. European Journal of Operational Research, 265(3), 813-828.