Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Amin Fanak, M., Shamsoddini, A. & Mirlatifi, S. M. (2022). Evapotranspiration Products Assessment Using FAOPenman-Monteith Method in Zayandehrood Basin. The Journal of Spatial Planning, 26(2): 79- 99. (In Persian)
Azizian, A., Bahman Abadi, B., & Jenab, M. (2020). Estimation of Evapotranspiration Using Reanalysis Models based on Global Earth Observations at Distinct Climate Regions of Iran. Journal of Water and Soil Resources Conservation, 10(1), 1-18. (In Persian)
Bouchet, R. J. (1963). Evapotranspiration reelle et potentielle, signification climatique [Actual and potential evapotranspiration climate service]. International Association of Scientific Hydrology, 62, 134-142.
Crago, R. D., Qualls, R., & Szilagyi, J. (2022). Complementary Relationship for evaporation performance at different spatial and temporal scales. Journal of Hydrology, 608, 127575.
Dinpashoh, Y. (2006). Study of reference crop evapotranspiration in IR of Iran. Agricultural water management, 84(1-2), 123-129.
dos Santos Farias, D. B., Althoff, D., Rodrigues, L. N., & Filgueiras, R. (2020). Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier. Theoretical and Applied Climatology, 142, 1481-1492.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of climate, 30(14), 5419-5454.
Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific data, 7(1), 109.
Huntington, J. L., Szilagyi, J., Tyler, S. W., & Pohll, G. M. (2011). Evaluating the complementary relationship for estimating evapotranspiration from arid shrublands. Water Resources Research, 47(5).
Iran's Ministry of Energy, (2012). Guide Lines and Criteria for Classification and Coding Basin and Study Areas in IRAN. Department of Technical Affairs, Report number 310, 150 pages. (In Persian)
Li, M. F., Tang, X. P., Wu, W., & Liu, H. Bin. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management. 70: 139–148.
Liu, H., Xin, X., Su, Z., Zeng, Y., Lian, T., Li, L., ... & Zhang, H. (2023). Intercomparison and evaluation of ten global ET products at site and basin scales. Journal of Hydrology, 617, 128887.
Liu, Z., Yao, Z., & Wang, R. (2019). Simulation and evaluation of actual evapotranspiration based on inverse hydrological modeling at a basin scale. Catena, 180, 160-168.
Ma, N., Zhang, Y., Szilagyi, J., Guo, Y., Zhai, J., & Gao, H. (2015). Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau. Water Resources Research, 51(2), 1069-1083.
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A., Fernández-Prieto, D., ... & Verhoest, N. E. (2017). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10(5), 1903-1925.
Matin, M. A., & Bourque, C. P. A. (2013). Assessing spatiotemporal variation in actual evapotranspiration for semi-arid watersheds in northwest China: Evaluation of two complementary-based methods. Journal of Hydrology, 486, 455-465.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., & Dolman, A. J. (2011). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15(2), 453-469.
Moshir Panahi, D., Kalantari, Z., Ghajarnia, N., Seifollahi-Aghmiuni, S., & Destouni, G. (2020). Variability and change in the hydro-climate and water resources of Iran over a recent 30-year period. Scientific reports, 10(1), 7450.
Moshir Panahi, D., Sadeghi Tabas, S., Kalantari, Z., Ferreira, C. S. S., & Zahabiyoun, B. (2021). Spatio-temporal assessment of global gridded evapotranspiration datasets across Iran. Remote Sensing, 13(9), 1816.
Moshir Panahi, D., Sadeghi Tabas, S., Kalantari, Z., Ferreira, C. S. S., & Zahabiyoun, B. (2021). Spatio-temporal assessment of global gridded evapotranspiration datasets across Iran. Remote Sensing, 13(9), 1816.
Ochege, F. U., Shi, H., Li, C., Ma, X., Igboeli, E. E., & Luo, G. (2021). Assessing satellite, land surface model and reanalysis evapotranspiration products in the absence of in-situ in central Asia. Remote Sensing, 13(24), 5148.
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032), 120-145.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., ... & Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624-3648.
Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological society, 85(3), 381-394.
Sharafi, S., & Mohammadi Ghaleni, M. (2021). Calibration of empirical equations for estimating reference evapotranspiration in different climates of Iran. Theoretical and Applied Climatology, 145(3-4), 925-939.
Shirmohammadi-Aliakbarkhani, Z., & Saberali, S. F. (2020). Evaluating of eight evapotranspiration estimation methods in arid regions of Iran. Agricultural Water Management, 239, 106243.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
Tsiros, I. X., Nastos, P., Proutsos, N. D., & Tsaousidis, A. (2020). Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1900–1997). Atmospheric Research, 240: 104914.
United Nations Educational, Scientific and Cultural Organization. 1979. Map of the world distribution of arid regions: map at scale 1:25,000,000 with explanatory note, MAB Technical Notes 7. UNESCO, Paris.
Xiang, K., Li, Y., Horton, R., & Feng, H. (2020). Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review. Agricultural Water Management, 232, 106043.
Yao, T., Lu, H., Yu, Q., Feng, S., Xue, Y., & Feng, W. (2023). Uncertainties of three high-resolution actual evapotranspiration products across China: Comparisons and applications. Atmospheric Research, 286, 106682.
Yarahmadi, J., Mirlatifi, S. M., Shamsoddini, A., & Delavar, M. (2020). Evaluation of temporal-spatial global terrestrial actual evapotranspiration data in Karkhe Dam Watershed. Watershed Engineering and Management, 12(4), 1024-1039. (In Persian)
Yin, W., Fan, Z., Tangdamrongsub, N., Hu, L., & Zhang, M. (2021). Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE–A case study over the state of Victoria, Australia. Journal of Hydrology, 602, 126735.
Zhang, M., Teng, Y., Jiang, Y., Yin, W., Wang, X., Zhang, D., & Liao, J. (2022). Evaluation of terrestrial water storage changes over china based on GRACE solutions and water balance method. Sustainability, 14(18), 11658.
Zuo, H., Chen, B., Wang, S., Guo, Y., Zuo, B., Wu, L., & Gao, X. (2016). Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type. Agricultural and Forest Meteorology, 222, 1-9.