Azimzadeh, H. R., Derakhshan, Z., & Shirgahi, F. (2022). Field scale spatio-temporal variability of wind erosion transport capacity and soil loss at Urmia Lake. Environmental Research, 215, 114250.
Besalatpour, A. A., Shirani, H., & Esfandiarpour Borujeni, I. (2015). Modeling of soil aggregate stability using support vector machines and multiple linear regression. Water and Soil, 29(2), 406-417. (In Persian).
Borrelli, P., Ballabio, C., Panagos, P., & Montanarella, L. (2014). Wind erosion susceptibility of European soils. Geoderma, 232, 471-478.
Chappell, A., Webb, N. P., Guerschman, J. P., Thomas, D. T., Mata, G., Handcock, R. N., ... & Butler, H. J. (2018). Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment, 204, 756-768.
Chen, W., Zhibao, D., Zhenshan, L., & Zuotao, Y. (1996). Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. Journal of Arid Environments, 34(4), 391-402.
Chepil, W. S., & Woodruff, N. P. (1954). Estimations of wind erodibility of field surfaces. Journal of Soil and Water Conservation, 9, 257-265.
Ciric, V., Manojlovic, M., Nesic, L., & Belic, M. (2012). Soil dry aggregate size distribution: effects of soil type and land use. Journal of Soil Science and Plant Nutrition, 12(4), 689-703.
Gholami, H., & Mohammadifar, A. (2022). Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Scientific Reports, 12(1), 1-12.
Han, Q., Qu, J., Zhang, K., Zu, R., Niu, Q., & Liao, K. (2009). Wind tunnel investigation of the influence of surface moisture content on the entrainment and erosion of beach sand by wind using sands from tropical humid coastal southern China. Geomorphology, 104(3-4), 230-237.
Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., & Tittonell, P. A. (2018). An evaluation of the loss-on-ignition method for determining the soil organic matter content of calcareous soils. Communications in Soil Science and Plant Analysis, 49(13), 1541-1552.
Jahanbazi, L., Jafarzadeh, A. A., & Forughyfar, H. (2016). Relation between soil evolution and landforms diversity in Dasht-E-Tabriz. Journal of Agriculture Science, 26(2), 191-204. (In Persian).
Kaewmano, C., Kheoruenromne, I., Suddhiprakarn, A., & Gilkes, R. J. (2010, August). Chemistry and clay mineralogy of Thai Natraqualfs. In 19th World Congress of Soil Science, Soil Solutions for a Changing World (pp. 1-6).
Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 425-442.
Kheirabadi, H., Mahmoodabadi, M., Jalali, V., & Naghavi, H. (2018). Sediment flux, wind erosion and net erosion influenced by soil bed length, wind velocity and aggregate size distribution. Geoderma, 323, 22-30.
Kouchami-Sardoo, I., Shirani, H., Esfandiarpour-Boroujeni, I., Álvaro-Fuentes, J., & Shekofteh, H. (2019). Optimal feature selection for prediction of wind erosion threshold friction velocity using a modified evolution algorithm. Geoderma, 354, 113873.
Kouchami-Sardoo, I., Shirani, H., Esfandiarpour-Boroujeni, I., Besalatpour, A. A., & Hajabbasi, M. A. (2020). Prediction of soil wind erodibility using a hybrid Genetic algorithm–Artificial neural network method. Catena, 187, 104315.
Lamorski, K., Pastuszka, T., Krzyszczak, J., Sławiński, C., & Witkowska-Walczak, B. (2013). Soil water dynamic modeling using the physical and support vector machine methods. Vadose Zone Journal, 12(4), 1-12.
Leys, J., Koen, T., & McTainsh, G. (1996). The effect of dry aggregation and percentage clay on sediment flux as measured by a portable field wind tunnel. Soil Research, 34(6), 849-861.
Li, J., Flagg, C., Okin, G. S., Painter, T. H., Dintwe, K., & Belnap, J. (2015). On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy. Aeolian Research, 19, 129-136.
Liao, K., Xu, S., Wu, J., Zhu, Q., & An, L. (2014). Using support vector machines to predict cation exchange capacity of different soil horizons in Qingdao City, China. Journal of Plant Nutrition and Soil Science, 177(5), 775-782.
Liu, L. Y., Li, X. Y., Shi, P. J., Gao, S. Y., Wang, J. H., Ta, W. Q., ... & Xiao, B. L. (2007). Wind erodibility of major soils in the farming-pastoral ecotone of China. Journal of Arid Environments, 68(4), 611-623.
Mina, M., Emami, H., & Karimi, A. (2020). Evaluation the efficiency of different mulches to combat wind erosion of sandy soil running title: Efficiency of different mulches to control wind erosion. Sustainable Earth Review, 1(1), 16-22.
Mina, M., Rezaei, M., Sameni, A., Moosavi, A. A., & Ritsema, C. (2021). Vis-NIR spectroscopy predicts threshold velocity of wind erosion in calcareous soils. Geoderma, 401, 115163.
Mina, M., Rezaei, M., Sameni, A., Ostovari, Y., & Ritsema, C. (2022). Predicting wind erosion rate using portable wind tunnel combined with machine learning algorithms in calcareous soils, southern Iran. Journal of Environmental Management, 304, 114171.
Moosavi, A. A., & Sepaskhah, A. R. (2012). Spatial variability of physico-chemical properties and hydraulic characteristics of a gravelly calcareous soil. Archives of Agronomy and Soil Science, 58, 631-656.
Moradi, F., Moosavi, A. A., & Khalili Moghaddam, B. (2016). Spatial variability of water retention parameters and saturated hydraulic conductivity in a calcareous Inceptisols (Khuzestan province of Iran) under sugarcane cropping. Archives of Agronomy and Soil Science, 62, 1686-1699.
Mozaffari, H., Moosavi, A. A., & Sepaskhah, A. (2021). Land use-dependent variation of near-saturated and saturated hydraulic properties in calcareous soils. Environmental Earth Sciences, 80(23), 769.
Mozaffari, H., Moosavi, A. A., Sepaskhah, A. R. & Cornelis, W. (2022). Long-term effects of land use type and management on sorptivity, macroscopic capillary length and water-conducting porosity of calcareous soils. Arid Land Research and Management, 36, 371-397.
Nafarzadegan, A. R., Zadeh, M. R., Kherad, M., Ahani, H., Gharehkhani, A., Karampoor, M. A., & Kousari, M. R. (2012). Drought area monitoring during the past three decades in Fars province, Iran. Quaternary International, 250, 27-36.
Narimani, Z., & Manafi, Sh. (2016). The study of physico-chemical and mineralogical properties and classification of some saline-sodic soils in the east of Urmia plain. Journal of Water and Soil Conservation (Journal of Agricultural Sciences and Natural Resources), 23(1), 65-82.
Négyesi, G., Lóki, J., Buró, B., & Szabó, S. (2016). Effect of soil parameters on the threshold wind velocity and maximum eroded mass in a dry environment. Arabian Journal of Geosciences, 9(11), 1-10.
Nelson, R. E. (1983). Carbonate and gypsum. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 181-197
Ostovari, Y., Moosavi, A. A., & Pourghasemi, H. R. (2020). Soil loss tolerance in calcareous soils of a semiarid region: evaluation, prediction, and influential parameters. Land Degradation & Development.1-12.
Page, A. I., Miller, R. H., & Keeny, D. R. (1982). Methods of soil analysis. Part II. Chemical and microbiological methods. Amer. Soc. Agron., Madison, Wisconsin, USA.
Pásztor, L., Négyesi, G., Laborczi, A., Kovács, T., László, E., & Bihari, Z. (2016). Integrated spatial assessment of wind erosion risk in Hungary. Natural Hazards and Earth System Sciences, 16(11), 2421-2432.
Perfect, E., Kay, B. D., Ferguson, J. A., Da Silva, A. P., & Denholm, K. A. (1993). Comparison of functions for characterizing the dry aggregate size distribution of tilled soil. Soil and Tillage Research, 28(2), 123-139.
Rezaei, M., Mina, M., Ostovari, Y., & Riksen, M. J. (2022). Determination of the threshold velocity of soil wind erosion using a wind tunnel and its prediction for calcareous soils of Iran. Land Degradation & Development, 33(13), 2340-2352.
Rezaei, M., Sameni, A., Shamsi, S. R. F., & Bartholomeus, H. (2016). Remote sensing of land use/cover changes and its effect on wind erosion potential in southern Iran. PeerJ, 4, e1948.
Sanikhani, H., Dinpashoh, Y., & Ghorbani, M. A. (2015). Baranduz-Chay River Flow Modeling Using the K-Nearest Neighbor and Intelligent Methods. Water and Soil Science, 25(1), 219-233. (In Persian).
Shao, Y. (Ed.). (2008). Physics and modeling of wind erosion. Dordrecht: Springer Netherlands.
Sharratt, B. S., & Vaddella, V. (2014). Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Research, 15, 227-234.
Sirjani, E., Sameni, A., Moosavi, A. A., Mahmoodabadi, M., & Laurent, B. (2019). Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars province, Iran. Geoderma, 333, 69-80.
Twarakavi, N. K., Šimůnek, J., & Schaap, M. G. (2009). Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society of America Journal, 73(5), 1443-1452.
Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation and signal processing. Advances in neural information processing systems, 9.
Visser, S. M., Sterk, G., & Ribolzi, O. (2004). Techniques for simultaneous quantification of wind and water erosion in semi-arid regions. Journal of Arid Environments, 59(4), 699-717.
Yan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316-323.
Zahedifar, M. )2023a(. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 106807-0.
Zahedifar, M. )2023b(. Feasibility of fuzzy analytical hierarchy process (FAHP) and fuzzy TOPSIS methods to assess the most sensitive soil attributes against land use change. Environmental Earth Sciences, 82, 1-17.
Zhou, T., Geng, Y., Chen, J., Pan, J., Haase, D., & Lausch, A. (2020). High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Science of the Total Environment, 729, 138244.