Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C., & Marques da Silva, J. (2018). Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts.
Soil Biology and Biochemistry, 116, 67-69. https://
doi.org/10.1016/j.soilbio.2017.10.002.
Ahmadi, M., Abbaspour, M., Ebadi, T., & Maknoon, R. (2021). Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures.
Engineering Geology, 283, 106021.
https://doi.org/10.1016/j.enggeo.2021.106021.
Al-Abadi, N. J. A. (2023). The role of the oil industry in environmental pollution-effects and suggested solutions. Global Ecology and Sustainable Development, 12, 67-87. https://www.journalzone.org/index.php/bjgesd/article/view/209.
Anderson, R. A. (2005). Algal Culturing Techniques. Elsevier Academic Press, London, 496p.
Arnaez, J., Lasanta, T., Ruiz-Flano, P., & Ortigosa, L. (2007). Factors Affecting Runoff and Erosion under Simulated Rainfall in Mediterranean Vineyards.
Soil and Tillage Research, 93(2), 324-334.
https://doi.org/10.1016/j.still.2006.05.013.
Asemoloye, M. D., Tosi, S., Daccò, C., Wang, X., Xu, S., Marchisio, M. A., Gao, W., Jonathan, S. G., & Pecoraro, L. (2020). Hydrocarbon degradation and enzyme activities of
Aspergillus oryzae and
Mucor irregularis isolated from nigerian crude oil-polluted sites.
Microorganisms, 8(12), 1912.
https://doi.org/10.3390/microorganisms8121912.
Barger, N. N., Castle, S. C., & Dean, G. N. (2013). Denitrification from nitrogenfixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecological Processes, 2(1), 1-9. https://doi.org/10.1186/2192-1709-2-16.
Barger, N.N., Weber, B., Garcia-Pichel, F., Zaady, E., & Belnap, J. (2016). Patterns and controls on nitrogen cycling of biological soil crusts, In Biological soil crusts: an organizing principle in drylands. Springer, Cham, 226, 257-285.
Barinova, S. (2017). How to Align and Unify the Cell Counting of Organisms for Bioindication. Environmental Sciences and Natural Resources, 2(2),1-4. https://doi: 10.19080/IJESNR.2017.02.555585
Belnap, J., Prasse, R., & Harper, K. (2001). Influence of biological soil crusts on soil environments and vascular plants, Biological soil crusts: structure, function and management, Springer, 281-300.
Belnap, J., Wilcox, B.P., Van Scoyoc, M.W., & Phillips, S.L. (2013). Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition.
Ecohydrology. 6(3), 474-482.
https://doi.org/10.1002/eco.1281.
Bergey, D. H., Buchanan, R. E., & Gibbons, N. E. (1974). Bergeys Manual of Determinative Bacteriology. Williams and Wilkins Company, Baltimor, Maryland, 1246 p.
Bowker, M. A., Reed, S. C., Maestre, F. T., & Eldridge D. J. (2018). Biocrusts: The living skin of the earth. Plant and Soil, 429, 1-7. https://doi.org/10.1007/s11104-018-3735-1.
Bullard, J. E., Ockelford, A., Strong, C., & Aubault, H. (2018). Effects of cyanobacterial soil crusts on surface roughness and splash erosion.
Journal of Geophysical Research: Biogeosciences, 123, 3697-3712.
https://doi.org/10.1029/2018JG004726.
Cania, B., Vestergaard, G., Kublik, S., Kohne, J. M., Fischer, T., Albert, A., Winkler, B., & Schulz, S. (2020). Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides. Microbial ecology, 79, 326-341. https://doi.org/10.1007/s00248-019-01415-6.
Canton, Y., Chamizo, S., Rodriguez-Caballero, E., Lazaro, R., Roncero-Ramos, B., Roman, J. R., & Sole-Benet, A. (2020). Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance.
Water, 12(3),720: 1-24.
https://doi.org/10.3390/w12030720.
Cappuccino, J. G., & Sherman, N. (2007). Microbiology: A Laboratory Manual. Dorling Kindersley Pvt. Ltd, License of Pearson Education, New Delhi, India,143–193.
Chamizo, S., Canton, Y., Miralles, I., & Domingo, F. (2012). Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems.
Soil Biology and Biochemistry, 49(1), 96-105.
https://doi.org/10.1016/j.soilbio.2012.02.017.
Chamizo, S., Adessi, A., Certini, G., & De Philippis, R. (2020). Cyanobacteria inoculation as a potential tool for stabilization of burned soils.
Restoration Ecology, 28, S106-S114.
https://doi.org/10.1111/rec.13092.
Chaudhry, S., Luhach, J., Sharma, V., & Sharma, Ch. (2012). Assessment of diesel degrading potential of fungal isolates from sludge contaminated soil of petroleum refinery, Haryana.
Microbiology, 7(3), 182-190.
https://scialert.net/abstract/?doi=jm.2012.182.190.
Chen, Q., He, Y., & Zhang, Z. (2022). Effects of diesel contamination on geotechnical properties of granitic residual soil. Arabian Journal of Geosciences, 15(17), 1474. https://doi.org/10.1007/s12517-022-10756-5.
Daryaee, R., Moosavi, A.A., ghasemi, R., & Riazi, M. (2021). Effect of Petroleum Products on the Strength of Calcareous Soils. Iranian Journal of Soil and Water Research, 52(10), 2607-2621. doi: 10.22059/ijswr.2021.329800.669061.(In Persian).
Deng, J., Orner, E.P., Chau, J.F.,Anderson, E.M., Kadilak, A.L.,Rubinstein, R.L., Bouchillon, G.M.,Goodwin, R.A., Gage, D.J., & Shor,L.M. (2015). Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels.
Soil Biology and Biochemistry. 83, 116-124.
https://doi.org/10.1016/j.soilbio.2014.12.006.
Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9(4),1-10. https://doi.org/10.1007/s13201-019-0970-4.
Ehlers, K., Bunemann, E. K., Oberson A., Frossard E., Frostegard A., Yuejian M., & Bakken L. R. (2008). Extraction of Soil bacteria from a Ferralsol.
Soil Biology and Biochemistry,40,1940-1946.
https://doi.org/10.1016/j.soilbio.2008.04.005.
Elinskiy, V. I., Akmedov, R. M., & Ivanova, Y. A. (2020). The problem of environmental pollution in oil production: Topical issue. Vestn. Moscow Univ. Minist. Intern. Aff. Russ,118-122.
Ershad, D. (2009). Fungi of Iran. Iranian Research Institute of Plant Protection, Tehran, 531p.
Falciglia, P. P., & Vagliasindi, F. G. A. (2015). Remediation of hydrocarbon polluted soils using2.45 GHz frequency-heating: Influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics.
Geochemical Exploration,151,66-73.
https://doi.org/10.1016/j.gexplo.2015.01.007.
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of
Arbuscular mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical and Biological Properties of the Soil.
Front. Fungal Biology, 3, 723892.
https://doi.org/10.3389/ffunb.2022.723892.
Ferreira, R.V., Serpa, D., Cerqueira, M.A., & Keizer, J.J. (2016). Short-time phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale.
Science of the Total Environmen, 551, 631-639.
https://doi.org/10.1016/j.scitotenv.2016.02.036.
Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany.
Catena, 80, 47-52.
https://doi.org/10.1016/j.catena.2009.08.009.
Galitskaya, P., Biktasheva, L., Blagodatsky, S., & Selivanovskaya, S. (2021). Response of bacterial and fungal communities to high petroleum pollution in different soils. Scientific Reports, 11(1),1-18. https://doi.org/10.1038/s41598-020-80631-4.
Gams, W., Verkley, G. J. M., & Crous, P. W. (2007). CBS Course of Mycology (5th ed). Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands, 242 p.
Garbeva, P., Tyc, O., Remus-Emsermann, M. N. P., Van der Wal, A., Vos, M., Silby, M., & De Boer, W. (2011). No apparent costs for facultative antibiotic production by the soil bacterium
Pseudomonas fluorescen Pf0-1.
PLoS ONE, 6(11), e27266.
https://doi.org/10.1371/journal.pone.0027266.
Garrity, G. M., Boone, D. R., & Castenholz, R. W. (2001). Bergey’s Manual of Systematic Bacteriology, second ed, New York, USA,1: 173.
Gharemahmudli, S., Najafinejad, A., Sadeghi, S.H.R., Zarei Darki, B. Mohammadian Behbahani, A., & Kheirfam, H. (2020). Reducing Surface Runoff from Soils Subjected to a Freezing-Thawing Cycle using Soil Cyanobacteria. Water and Soil Conservation, 27(3), 163-180. doi: 10.22069/jwsc.2020.17693.3318. (In Persian).
Gupta, A., Mishra, P., Pandey, C., Singh, U., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data.
Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi:
10.4103/aca.ACA_157_18.
Havrilla, C., Leslie, A.D., Di Biase, J.L., & Barger, N.N. (2020). Biocrusts are associated with increased plant biomass and nutrition at seedling stage independently of root-associated fungal colonization. Plant and Soil, 446, 331-342. https://doi.org/10.1007/s11104-019-04306-4.
Jafarpoor, A., Sadeghi, S. H. R., Zarei Darki, B., & Homaee, M. (2022a). Changes in hydrologic components from a mid-sized plots induced by rill erosion due to cyanobacterization,
Soil and Water Conservation Research, 10(1), 143-148.
https://doi.org/10.1016/j.iswcr.2021.05.002.
Jafarpoor, A., Sadeghi, S. H., Darki, B. Z., & Homaee, M. (2022b). Changes in morphologic, hydraulic, and hydrodynamic properties of rill erosion due to surface inoculation of endemic soil cyanobacteria.
Catena, 208, 105782.
https://doi.org/10.1016/j.catena.2021.105782.
Khaledi Darvishan, A., Sadeghi, S. H. R., Homaee, M., & Arabkhedri, M. (2014). Measuring sheet erosion using synthetic color‐contrast aggregates.
Hydrological Processes, 28(15), 4463-4471.
https://doi.org/10.1002/hyp.9956.
Kheirfam, H., Sadeghi, S. H. R., Zarei Darki, B., & Homaee, M. (2017a). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria.
Catena, 152, 40-46.
https://doi.org/10.1016/j.catena.2017.01.006.
Kheirfam, H., Sadeghi, S. H. R., Homaee, M., & Zarei-Darki, B. (2017b). Quality improvement of an erosion-prone soil through microbial enrichment.
Soil and Tillage Research,165, 230-238.
https://doi.org/10.1016/j.still.2016.08.021.
Kheirfam, H., Homaee, M., Sadeghi, S.H.R., & Zarei Darki, B. (2017c). Role of Biological Soil Crusts Enrichment through Bacteria Inoculation and Stimulation of Nitrogen Increasing in an Erosion-Prone Soil. Water and Soil, 31(2), 545-556. doi: 10.22067/jsw.v31i2.54598.(In Persian).
Kheirfam, H., Sadeghi, S.H.R., Zarei Darki, B., & Homaee, M. (2018). Reducing soil and water loss through stimulation of soil bacteria in experimental small plots. Water and Soil Conservation, 25(4): 243-257. doi: 10.22069/jwsc.2018.14361.2910.(In Persian).
Kheirfam, H., Sadeghi, S. H. R., & Zarei Darki, B. (2020). Soil conservation in an abandoned agricultural rain-fed land through inoculation of cyanobacteria.
Catena, 187, 104341.
https://doi.org/10.1016/j.catena.2019.104341.
Komarek, J., & Anagnostidis, K. (1999). Süsswasserflora von Mitteleuropa Bd. 19/1: Cyanoprokaryota: Teil/Part 1: Chroococcales. Spektrum Akademischer Verlag. In German,548p.
Koolivand, A., Abtahi, H., Godini, K., Saeedi, R., Rajaei, M. S., & Parhamfar, M. (2019). Biodegradation of oil tank bottom sludge using a new two-phase composting process: Kinetics and effect of different bulking agents. Material Cycles and Waste Management, 21(6), 1280-1290. https://doi.org/10.1007/s10163-019-00881-x.
Li, X. R., Zhang, P., Su, Y. G., & Jia, R. L. (2012). Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study.
Catena, 97, 119-126.
https://doi.org/10.1016/j.catena.2012.05.009.
Lutton, E., Schellevisa, R., & Shanmuganathan, A. (2013). Culture-dependent methods increase observed soil bacterial diversity from Marcellus shale temperate forest in Pennsylvania. student Research, 2(1), 9-16.
https://doi.org/10.47611/jsr.v2i1.110.
Miralles, I., Trasar-Cepeda, C., Leiros, M. C., & Gil-Sotres, F. (2013). Labile carbon in biological soil crusts in the Tabernas desert, SE Spain.
Soil Biology and Biochemistry, 5,1-8.
https://doi.org/10.1016/j.soilbio.2012.11.010.
Mohammadi, S., Homaee, M., & Sadeghi, S.H.R., (2015). Runoff Generation in Kerosene and Gas Oil Contaminated Soils. Iranian Journal of Soil and Water Research, 46(1): 121-131. doi: 10.22059/ijswr.2015.54301.(In Persian).
Mohammadi, S., Homaee, M., & Sadeghi, S. H. R. (2018). Runoff and sediment behavior from soil plots contaminated with kerosene and gasoil
. Soil and Tillage Research, 182, 1-9.
https://doi.org/10.1016/j.still.2018.04.015.
Mohsenzadeh, F., Zafar, D., & Noorisafa, B. (2016). Adaptation of some fungal species of Trichoderma to petroleum, Cellular and Molecular Researches (Iranian Journal of Biology), 29(3), 321-330.(In Persian).
Muller, K., Mason, K., Strozzi, A. G., Simpson, R., Komatsu, T., Kawamoto, K., & Clothier, B. (2019). Runoff and nutrient loss from a water-repellent soil.
Geoderma, 322, 28-37.
https://doi.org/10.1016/j.geoderma.2018.02.019.
Norozpour, M., Sarikhani, M.R., & Aliasgharzad, N. (2023). Monitoring of soil respiration changes in a heavy naphtha-contaminated sandy loam soil under different bioremediation treatments. Water and Soil Science, doi:10.22034/WS.2021.47654.2436. doi: 10.22034/ws.2021.47654.2436.(In Persian).
Rathod, V.P., Parekh, H. H., Rajpura, P. D., Shah, M. V., Singh, Sh. R., Panchal, R. R., & Upadhy, V. J. (2022). Effect of bioremediation technique on engineering properties of crude oil-contaminated soil.
Biocatalysis and Agricultural Biotechnology, 43, 102393.
https://doi.org/10.1016/j.bcab.2022.102393.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics, 2(1), 21-33.
Rodríguez-Caballero, E., Canton, Y., Chamizo, S., Lazaro, R., & Escudero, A. (2013). Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, microtopography and hydrological drivers. Ecosystems, 16(4), 529-546. https://doi.org/10.1007/s10021-012-9626-z.
Roman, J. R., Roncero-Ramos, B., Rodríguez-Caballero, E., Chamizo, S., & Canton, Y. (2021). Effect of water availability on induced cyanobacterial biocrust development.
Catena,197,104988.
https://doi.org/10.1016/j.catena.2020.104988.
Rossi, F., Mugnai, G., & Philippis, R.D. (2017). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 1-16
Sadeghi, S. H. R., Abdollahi, Z., & Khaledi Darvishan, A. (2013). Experimental comparison of some techniques for estimating natural rain drop size distribution in southern coast of Caspian Sea, Iran.
Hydrological Sciences. 58(6), 1374-1382.
https://doi.org/10.1080/02626667.2013.814917.
Sadeghi, S.H.R., Kheirfam, H., Homaee, M., & Zarei Darki, B. (2017a). Improvability of Water Infiltration in an Erosion-Prone Soils under Laboratorial Conditions through Artificial Increasing of Soil Microorganisms Population. Iranian Journal of Soil and Water Research,47(4), 797-805. i: 10.22059/ijswr.2016.59986.(In Persian).
Sadeghi, S. H. R., Kheirfam, H., Homaee, M., Zarei Darki, B., & Vafakhah, M. (2017b). Improving runoff behavior resulting from direct inoculation of soil micro-organisms.
Soil and Tillage Research, 171, 35-41.
https://doi.org/10.1016/j.still.2017.04.007.
Sadeghi, S.H.R., Jafarpoor, A., Zabihi Silabi, M., Molashahi, Sh., Naghdi, M., Sharifi Moghani, M., Ghysoori, Z., & Farzadfar, E. (2021a). Biologic Management Framework of Soil Erosion in the Watershed (Applied study: Oshnavieh Galazchai, West Azerbaijan, Iran). Iranian Journal of Soil and Water Research, 52(4), 997-1010. doi: 10.22059/ijswr.2021.317114.668871.(In Persian).
Sadeghi, S. H. R., Najafinejad, A., Gharemahmudli, S., Zarei Darki, B., Behbahani, A. M., & Kheirfam, H. (2021b). Reduction in soil loss caused by a freeze-thaw cycle through inoculation of endemic soil microorganisms.
Applied Soil Ecology, 157, 103770.
https://doi.org/10.1016/j.apsoil.2020.103770.
Salmazo, P., De Marco, N., Soeiro, V. S., Castanho, N. R. C. M., Leite, F. G., Chaud, M. V., Grotto, D., & Jozala, A. F. (2023). Evaluation of Bacillus subtilis as a tool for biodegrading diesel oil and gasoline in experimentally contaminated water and soil. Current Microbiology, 80(3), 94. https://doi.org/10.1007/s00284-022-03175-y.
Schrey, S. D., Erkenbrack, E., Früh, E., Fengler, S., Hommel, K., Horlacher, N., Schulz, D., Ecke, M., Kulik, A., Fiedler, H. P., Hampp, R., & Tarkka, M. T. (2012). Production of fungal and bacterial growthmodulating secondary metabolites is widespreadamong mycorrhiza-associated streptomycetes, BMC Microbiology, 12: 164. https://doi.org/10.1186/1471-2180-12-164.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4): 591-611. https://doi.org/10.2307/2333709.
Sileshi, G., & Mafongoya, P.L. (2006). Long-term effect of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia.
Agriculture Ecosystems and Environment, 115, 69-78.
https://doi.org/10.1016/j.agee.2005.12.010.
Tiwari, O. N., Bhunia, B., Mondal, A., Gopikrishna, K., & Indrama, T. (2019). System metabolic engineering of exopolysaccharide-producing cyanobacteria in soil rehabilitation by inducing the formation of biological soil crusts: A review.
Cleaner Production,211,70-82.
https://doi.org/10.1016/j.jclepro.2018.11.188.
Tucker, C. L., McHugh, T. A., Howell, A., Gill, R., Weber, B., Belnap, J., Grote, E., & Reed, S. C. (2017). The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry, 135, 239-249. https://doi.org/10.1007/s10533-017-0372-3.
Varjani, S.J., & Upasani, V.N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants.
Int Biodeterior Biodegradation, 120(1), 71-83.
https://doi.org/10.1016/j.ibiod.2017.02.006.
Zarei Dark, B., Seyfabadi, J., & Fayazi, S. (2017). Effect of nutrients on total lipid content and fatty acids profile of
Scenedesmus obliquus.
Agriculture, Agribusiness and Biotechnology, (60), e17160304.
https://doi.org/10.1590/1678-4324-2017160304.
Zhao, Y., & Xu, M. (2013). Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies.
Hydrologic Engineering, 18(4), 387-393.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000633.