The effect of extractant type and soil/extractant ratio on the extraction of soil available potassium

Document Type : Research Paper

Authors

1 Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran

2 Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran

Abstract

Potassium, as an essential element, which its role in plant metabolism and resistance to biological and environmental stresses has been proven many times, requires accurate extraction and measurement for optimal management. The present study was conducted to investigate the effect of soil/extractant ratio on measuring the amount of available potassium in the soil. For this purpose, in October 2021, 62 soil samples were taken from agricultural fields all over the country, and their potassium content was measured by three extractants: 1 M ammonium acetate (three ratios of 5:1, 10:1, and 20:1), ammonium bicarbonate-DTPA (2:1, 5:1, and 10:1), and Mahlic-3 (5:1, 10:1, and 20:1) in the Karaj soil and water research institute (SWRI). The results showed that the amount of available potassium measured by ammonium acetate and Mehlich-3 extractants had no significant difference, but these two extractants had a significant difference with ammonium bicarbonate-DTPA. Probably, this difference is due to replacing the 2:1 ratio with a 20:1 ratio in the extraction method by ammonium bicarbonate-DTPA. In all three extractants, the estimated soil available potassium increased by increasing the soil to extractant ratio. On average, the amount of extracted potassium in 20:1 ratio was 11.5% and 5.01% more than the ratio of 5:1 and 10:1 for ammonium acetate, and 8.79% and 6.84% more than the ratios of 10:1 and 5:1 for Mehlich-3, respectively. By using a 10:1 ratio, all three extractants measured the amount of soil-available potassium without any significant differences. Therefore, it is suggested that all three extractants be used to determine the amount of available potassium. In addition, it seems a 10:1 ratio is a suitable ratio for measuring the amount of available potassium with minimal difference between different extractants.

Keywords


Ali Ehyaei, M., & Behbehani Zade, A. A. (1993). Methods of Soil Chemical analysis. Soil and Water Research Institute of Agricultural Extension and Education, 80-100. (In Farsi)
 Beegle, D. B., & Oravec, T. C. (1990). Comparison of field calibrations for Mehlich 3 P and K with Bray‐Kurtz P1 and ammonium acetate K for corn. Communications in Soil Science and Plant Analysis, 21(13-16), 1025-1036.
Bremner, J. M., Black, C. A., Evans, D. D., Ensuinger, L. E., White, J. K., & Clark, F. F. (1965). Methods of Soil Analysis Part 2 Agronomy 9.
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
Cheraghi, M., Motesharezadeh, B., & Alikhani, H.A., Mousavi, S.M. (2022). Optimal management of plant nutrition in tomato (Lycopersicon esculent Mill) by using biologic, organic and inorganic fertilizers. Jurnal of plant nutrition. DOI: 10.1080/01904167.2022.2092511.
Cheraghi, M., Motesharezadeh, B., & Alikhani, H. A. (2020). Nutritional and Morpho-physiological Responses of Tomato Plant (Lycopersicon esculentum Mill) Affected by Biological and Chemical Fertilizers. Iranian Journal of Soil and Water Research, 51(10), 2559-2574. (In Farsi)
Chua, M. F., Youbee, L., Oudthachit, S., Khanthavong, P., Veneklaas, E. J., & Malik, A. I. (2020). Potassium fertilisation is required to sustain cassava yield and soil fertility. Agronomy, 10(8), 1103.
Cottenie, A. (1980). Soil and plant testing as a basis of fertilizer recommendations (No. 38/2).
Fathi, S., Samadi, A., Davari, M., & Asadi Kapourchal, S. (2014). Evaluating different extractants for determining corn available potassium in some calcareous soils of Kurdistan province. Cereal Research4(3), 253-266. (In Farsi)
Gee, G. W., & Or, D. (2002). 2.4 Particle-size analysis. Methods of soil analysis. Part, 4(598), 255-293.
Grzebisz, W., & Oertli, J. J. (1993). Evaluation of universal extractants for determining plant available potassium in intensively cultivated soils. Communications in soil science and plant analysis, 24(11-12), 1295-1308.
Haby, V. A., Russelle, M. P., & Skogley, E. O. (1990). Testing soils for potassium, calcium, and magnesium. Soil testing and plant analysis, 3, 181-227.
Hanlon, E. A., & Johnson, G. V. (1984). Bray/Kurtz, Mehlich III, AB/D and ammonium acetate extractions of P, K and Mg in four Oklahoma soils. Communications in soil science and plant analysis, 15(3), 277-294.
Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., & Hawrylak-Nowak, B. (Eds.). (2018). Plant nutrients and abiotic stress tolerance (pp. 221-252). Singapore: Springer.
Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of soil analysis: Part 3 chemical methods, 5, 551-574.
Heltai, G., & Füleky, G. (1992). Soil analysis and nutrition capacity. Microchemical Journal46(1), 4-19.
Hergert, G. W. (2009). Soil Testing more important than ever for efficient fertilizer use.
Hosseinpur, A. R., & Samavati, M. (2008). Evaluation of chemical extractants for the determination of available potassium. Communications in Soil Science and Plant Analysis, 39(9-10), 1559-1570.
Illés, Á., Mousavi, S. M., Bojtor, C., & Nagy, J. (2020). The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Research Communications, 48(4), 565-573.
Jackson, M. L. (1975). Soil chemical analysis: advanced course.,(Department of Soil Science, University of Wisconsin: Madison, WI).
Jones Jr, J. B. (1990). Universal soil extractants: their composition and use. Communications in Soil Science and Plant Analysis, 21(13-16), 1091-1101.
Khodshenas, M. A., Ghadbeiklou, J., & Dadivar, M. (2021). Evaluation of chemical extractants and determination of the potassium critical level in soils under the bean cultivation. (In Farsi)
Knudsen, D., Peterson, G. A., & Pratt, P. F. (1983). Lithium, sodium, and potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 225-246.
Korb, N., Jones, C., & Jacobsen, J. (2002). Potassium cycling, testing, and fertilizer recommendations. Nutrient Management Module, 5, 1-12.
Krauss, A. (1999, June). Balanced nutrition and biotic stress. In IFA agricultural conference on managing plant nutrition (Vol. 29).
LIU, L., & BATES, T. E. (1990). Evaluation of soil extractants for the prediction of plant-available potassium in Ontario soils. Canadian Journal of Soil Science, 70(4), 607-615.
Ma, L., Duan, T., & Hu, J. (2020). Application of a universal soil extractant for determining the available NPK: A case study of crop planting zones in central China. Science of the Total Environment, 704, 135253.
McKeague, J. A. (1978). Manual on soil sampling and methods of analysis. Can. Soc. Soil Sci, 212.
Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division (Mimeo 1953), 23-89.
Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in soil science and plant analysis, 15(12), 1409-1416.
Mousavi, S. M., Srivastava, A. K., & Cheraghi, M. (2022). Soil health and crop response of biochar: an updated analysis. Archives of Agronomy and Soil Science, 1-26.
Noori, O. (2012). Evaluation of olive (Olea europaea L.) adaptability on the sloping lands of Tarom region in Zanjan province using Remote Sensing (RS) and Geographical Information Systems (GIS) (Doctoral dissertation, Ph. D. Thesis, Tarbiat Modares University, 181p). (In Farsi)
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13), 5488.
Pratt, P. F. (1965). Potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1022-1030.
Rowell, D. L. (1994). Soil science: Methods and applications. 350 pp. Harlow: Longman Group.
Sardans, J., & Peñuelas, J. (2021). Potassium control of plant functions: Ecological and agricultural implications. Plants, 10(2), 419.
Schjoerring, J. K., Cakmak, I., & White, P. J. (2019). Plant nutrition and soil fertility: synergies for acquiring global green growth and sustainable development. Plant and Soil, 434(1), 1-6.
Schollenberger, C. J., & Simon, R. H. (1945). Determination of exchange capacity and exchangeable bases in soil—ammonium acetate method. Soil science, 59(1), 13-24.
Shahbazi, K., & Besharati, H. (2013). Overview of agricultural soil fertility status of Iran. Land Management Journal, 1, 1-15. (In Farsi)
Sharifi, M., & Kalbasi, M. (2001). Selection of suitable extractant to extract available potassium for corn in soils of central region of Isfahan province. Journal of Science and Technology of Agriculture and Natural Resources.
Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Communications in Soil Science and Plant Analysis, 8(3), 195-207.
Soltanpour, P. N., & Workman, S. (1979). Modification of the NH4 HCO3‐DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis, 10(11), 1411-1420.
Sonneveld, C., & Van Den Ende, J. (1971). Soil analysis by means of a 1: 2 volume extract. Plant and Soil, 35(1), 505-516.
Sutton, P., & Seay, W. A. (1958). Relationship between the potassium removed by millet and red clover and the potassium extracted by 4 chemical methods from 6 Kentucky soils. Soil Science Society of America Journal, 22(2), 110-115.
Thomas, G. W. (1983). Exchangeable cations. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 159-165.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science37(1), 29-38.
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390.
Zadehparizi, S., Tajabadi Pour, A., Esfandiarpoor, I. (2017). Evaluation chemical extractants in determination of available potassium for pistachio in calcareous soils of Rafsanjan. Journal of Crops Improvement, 18(4), 935-947. (In Farsi)
Zarrabi, M., & Jalali, M. (2008). Evaluation of extractants and quantity–intensity relationship for estimation of available potassium in some calcareous soils of western Iran. Communications in soil science and plant analysis, 39(17-18), 2663-2677.