Ayoub, G. M. (1971). Dispersion of buoyant jets in a flowing ambient fluid. PhD thesis, Department of Civil Engineering, Imperial College of Science Technology, London, England.
Bey, A., Faruque, M., & Balachandar, R. (2007). Two-dimensional scour hole problem: Role of fluid structures. Journal of Hydraulic Engineering, 133(4), 414-430.
Chiew, Y.-M., & Lim, S.-Y. (1996). Local scour by a deeply submerged horizontal circular jet. Journal of Hydraulic Engineering, 122(9), 529-532.
Ead, S., & Rajaratnam, N. (2002). Plane turbulent wall jets in shallow tailwater. Journal of engineering mechanics, 128(2), 143-155.
Eriksson, J. (2003). Experimental studies of the plane turbulent wall jet. technical report from Royal institute of technology, S-100 44 stockholm, Sweden.
Eriksson, J., Karlsson, R., & Persson, J. (1998). An experimental study of a two-dimensional plane turbulent wall jet. Experiments in fluids, 25(1), 50-60.
Faruque, M., Sarathi, P., & Balachandar, R. (2006). Clear water local scour by submerged three-dimensional wall jets: Effect of tailwater depth. Journal of Hydraulic Engineering, 132(6), 575-580.
Iwane, T., Urase, T., & Yamamoto, K. (2001). Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Science and Technology, 43(2), 91-99.
Launder, B., & Rodi, W. (1983). The turbulent wall jet measurements and modeling. Annual review of fluid mechanics, 15(1), 429-459.
Lee, C.-H., Xu, C., & Huang, Z. (2019). A three-phase flow simulation of local scour caused by a submerged wall jet with a water-air interface. Advances in Water Resources, 129, 373-384.
Lee, J. H.-w., Chu, V., & Chu, V. H. (2003). Turbulent jets and plumes: A Lagrangian approach (Vol. 1): Springer Science & Business Media.
Nemati, S & Mehraein, M. (2019). Effects of the location of the nozzle on scour due to wall jets. Hydraulic journal, 142 (2). (In Persian).
Rajaratnam, N., & Berry, B. (1977). Erosion by circular turbulent wall jets. Journal of Hydraulic Research, 15(3), 277-289.
Sarathi, P., Faruque, M., & Balachandar, R. (2008). Influence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jets. Journal of Hydraulic Research, 46(2), 158-175.
Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement. California Institute of Technology , Pasadena, CA.
Si, J.H., Lim, S.Y., & Wang, X.K. (2019). Jet-Flipping in Scour Hole Downstream of Unsubmerged Weir with Apron. Journal of Hydraulic Engineering, 145(10), 04019035.
Si, J.H., Lim, S.Y., & Wang, X.K. (2020). Evolution of flow fields in a developing local scour hole formed by a submerged wall jet. Journal of Hydraulic Engineering, 146(6), 04020040.
Tachie, M., Balachandar, R., & Bergstrom, D. (2004). Roughness effects on turbulent plane wall jets in an open channel. Experiments in fluids, 37(2), 281-292.
Verhoff, A. (1963). The two-dimensional, turbulent wall jet with and without an external free stream. Report number .626, Office of Naval Research Department of the Navy Contract Nonr 1858(14) in Co-operation with Bureau of Naval Weapons.
Xie, C, & Lim, S.Y. (2015). Effects of jet flipping on local scour downstream of a sluice gate. Journal of Hydraulic Engineering, 141(4), 04014088.
Yan, X., Mohammadian, A., & Rennie, C. D. (2020). Numerical modeling of local scour due to submerged wall jets using a strict vertex-based, terrain conformal, moving-mesh technique in OpenFOAM. International Journal of Sediment Research, 35(3), 237-248.
Zhao, P., Yu, G., & Zhzng, M. (2019). Local scour on noncohesive beds by a submerged horizontal circular wall jet. Journal of Hydraulic Engineering, 145(9), 06019012.