Afzali, M., Taei Semiromi, J., & Amirinezhad, M. (2018). Evaluation of WOFOST model for growth and development simulation of maize under summer cropping system conditions in sub-tropical region of Southern Kerman. Iranian Journal of Field Crop Science, 49(1): 57-64. In Farsi
Ahmadi, M., Hooshmand, A., Broomand Nasab, S., & Sharifi, M. A. (2019). Calibration and validation of WOFOST model for wheat in qazvin plain. Iranian Journal of Soil and Water Research, 50(2): 329-338. In Farsi
Boogaard, H. L., Van Diepen, C. A., Roetter, R. P., Cabrera, J. M. C. A. & Van Laar, H. H. (1998). WOFOST 7.1; User’s Guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 DLO Winand Staring Center, Wageningen, The Netherlands.
Ceglar, A., & Kajfez-Bogataj, L. (2012). Simulation of maize yield in current and changed climatic
conditions: Addressing modelling uncertainties and the importance of bias correction in climate model
simulations. European Journal of Agronomy, 37, 83–95.
Daneshfaraz, R., & Razaghpour, H. (2014). Evaluation of climate change impacts on potential evapotranspiration in the west Azerbaijan province. Journal of Geographic Space, 14(46): 199-211. In Farsi
Dowswell, C. (2019). Maize in the third world. CRC Press.
Basheer, A. K., Lu, H., Omer, A., Ali, A. B., & Abdeldgader, A. M. S. (2016). Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 20: 1331-1353.
Bayatani, F., Fallah Ghalhari, G., Karami, M., & Taeei Samiromi, J. (2020). The impacts of climate change on the risk of cold stress in autumn crop pattern (Case study: Tropical and subtropical areas of Kerman province). Journal of Natural Environmental Hazards, 9(24): 63-78. In Farsi
Bhatia, V.S., P., Singh, S. P., Wani, G. S., Chauhan, A. V. R., Rao Mishra, A. K., & Srinivas, K. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India usingCROPGRO Soybeanmodel. Agricultural and Forest Meteorology 148: 1252–1265.
Dane, J. H. & Topp, C. G. (Eds.). (2020). Methods of Soil Analysis, Part 4: Physical Methods (Vol. 20). John Wiley & Sons. 1744 pp.
Egdernezhad, A., Masjedi, A. R., Shokouhfar, A. R., & Alavifazel, M. (2018). Evaluation of AquaCrop and WOFOST in simulating of corn yield under deficit irrigation. Journal of Plant Production Science, 8(1): 69-82. In Farsi
Ghonchehpour, D., Sadoddin, A., Bahremand, A., Salmanmahini, A., & Jakeman, A. (2019). Application of a quantitative screening approach in statistical downscaling model (SDSM) to generate climate change scenarios (Case study: the Gorgan-roud River Basin). Ecohydrology, 6(2): 397-414. In Farsi
Hosseini, S. T., Khoshravesh, M., & Ziatabar Ahmadi, M. (2016). Effect of climate change and evaluation of planting date on soybean yield. Journal of Water Research in Agriculture, 29(4): 559-575. In Farsi
IPCC. (2014). Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, 48-Pachauri, R.K and Reisinger, A. (Eds.)]. IPCC, Geneva, Switzerland, 104 pp.
Lane, J. W., & Ferrira, V. A. (1982). Sensitivity analysis. In CREAM, A field scale model for chemical, Runoff and EROSIN from Agricultural Management system, (ed.) W. G. Knisel, Vol. A. Model Documentation. USDA conservation Res. Report No. 26. 113-158. Washington, D.C.
Li, X., Takahashi, T., Suzuki, N., & Kaiser, H. M. (2011). The impact of climate change on maize yields in the United States and China. Agricultural Systems 104: 348–353
Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., & Wu, S. (2013). Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 58(3): 634-643.
Mera, R. J., Niyogi, D., Buol, G. S., Wilkerson, G. G., & Semazzi, F. H. M. (2006). Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model-based study. Global and Planetary Change 54: 163–182.
Meza, F. J., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21–30
Milapalli, D., Singh, R., & Raghuwanshi, N. (2009). Physically based model for simulating flow in furrow irrigation. I: Model development. Journal of Irrigation and Drainage Engineering, 135: 739-746.
Mohammadkhani, A., Pourgholam-Amiji, M., Sohrabi, T., & Liaghat, A. (2020). The effect of different levels of water stress in two surface and subsurface drip irrigation systems on yield and water productivity of maize. Journal of Water and Irrigation Management, 10(2): 247-264. In Farsi
Moradi, R., Koochaki, A., & Nassiri Mahallati, M. (2014). Effect of climate change on maize production and shifting of planting date as adaptation strategy in Mashhad. Agricultural Science and Sustainable Production, 23(4): 111-130.
Rahimi-Moghaddam, S., Eyni Nargeseh, H., Deihimfard, R., & Haghighat, M. (2019). Simulating climate change effect on maize grain yield in Kermanshah province using a process-based simulation model. Iranian Journal of Crop Sciences, 20(4): 315-328. In Farsi
Sarafrouzeh, F., Jalali, M., Jalali, T., & Jamali, A. (2014). Changing the effect of future climate on water consumption of wheat in Tabriz. Journal of Geographic Space, 12(37): 96-81. In Farsi
Shafiei, M., Ghahreman, B., Saghafian, B., Davari, K., & Vazifeh Doost, M. (2018). Global sensitivity analysis of WOFOST model parameters for maize and wheat yield simulation. Iranian Journal of Soil and Water Research, 49(4): 831-839. In Farsi
Walpole, R. E., Myers, R. M. & Myers, S. L. (1998). Probability and statistics for engineers and scientists. (6th ed) New Jersey: Prentice Hall International.823pp.
Wilby, R. L., Dawson C. W., & Barrow, E. M. (2006). SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modeling and Software, 17(3):147-159.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. American Meteorology Society, 63: 1309-1313.