Periphyton and Its Key Role in Paddy Fildes and Environmental Health

Document Type : Review

Authors

1 Full professor, Department of soil science, College of agriculture and natural resource, University of Tehran.

2 Postdoctoral researcher, Department of Soil Science, College of agriculture and natural resource, University of Tehran.

3 Assistant professor, Department of Soil Science, College of agriculture and natural resource, University of Tehran.

Abstract

Periphyton or periphytic biofilms are microbiomes consisting of a complex matrix including autotrophic and heterotrophic types such as algae, bacteria, fungi, protozoa, metazoa, etc. Periphytic biofilms are commonly found in many aquatic ecosystems such as the sea, lakes, rivers, streams, ponds and paddy fields and play an important role in primary production, food network interactions such as carbon cycle, phosphorus and some other nutrients. Periphytic biofilms respond quickly to environmental changes, especially nutrients and light, and can be used as an indicator of disturbances and adverse conditions in aquatic ecosystems. In recent years, research interests in using periphyton for controljng the non-point source pollution, treating contaminated water, and interferencing nutrient have increased. Although the effects of periphyton on water quality and its relationship to water flows have been investigated by researchers, our understanding of their function in paddy fields and their effect on nutrient cycles is limited. In the present article, an attempt has been made to present a summary of the research done on periphyton and their effect on the nutrient cycle, especially on rice plants' growth in paddy fields.

Keywords


Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136-144.
Alikhani, H. A., & Emami, S. (2019). Periphyton is an opportunity to achieve sustainable agriculture. 16th Iranian soil science congress. (In Farsi)
Alikhani, H. A., Ahmadi, H., Etesami, H., Noroozi, M., Asadi-Rahmani, H., & Emami, S. (2020). A study of the algae flora of the periphyton community in aquatic ecosystems of Guilan province. Soil Biology. (In Farsi)
Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. Springer Science & Business Media.
Azeem, B., KuShaari, K., Man, Z. B., Basit, A., & Thanh, T. H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. Journal of Controlled Release, 181, 11-21.
Azim, M. E. (2009). Photosynthetic periphyton and surfaces. Encyclopedia of Inland Waters, Academic Press, Oxford, pp. 184-191.
Azim, M. E., Verdegem, M. C., van Dam, A. A., & Beveridge, M. C. (Eds.). (2005). Periphyton: ecology, exploitation and management. CABI.
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251.
Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hansen, C. M. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426(6965), 439-442.
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.
Bell, W., & Mitchell, R. (1972). Chemotactic and growth responses of marine bacteria to algal extracellular products. The Biological Bulletin, 143(2), 265-277.
Belnap, J., Prasse, R., & Harper, K. T. (2001). Influence of biological soil crusts on soil environments and vascular plants. In Biological soil crusts: structure, function, and management (pp. 281-300). Springer, Berlin, Heidelberg.
Bergey, E. A. (2008). Does rock chemistry affect periphyton accrual in streams?. Hydrobiologia, 614(1), 141-150.
Bernhardt, E. S., & Likens, G. E. (2002). Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology, 83(6), 1689-1700.
Borovec, J., Sirová, D., Mošnerová, P., Rejmánková, E., & Vrba, J. (2010). Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry, 101(1-3), 323-333.
Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., ... & Lehmann, K. (2012). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Science of the Total Environment, 434, 201-212.
Cao, Y., Tian, Y., Yin, B., & Zhu, Z. (2013). Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 147, 23-31.
Chauhan, B. S., Jabran, K., & Mahajan, G. (Eds.). (2017). Rice production worldwide (Vol. 247). Springer International Publishing.
Cho, M., Jang, T., Jang, J. R., & Yoon, C. G. (2016). Development of agricultural non‐point source pollution reduction measures in Korea. Irrigation and Drainage, 65, 94-101.
Demars, B. O., Russell Manson, J., Olafsson, J. S., Gislason, G. M., Gudmundsdottír, R., Woodward, G. U. Y., ... & Friberg, N. (2011). Temperature and the metabolic balance of streams. Freshwater Biology, 56(6), 1106-1121.
Dempster, P. W., Beveridge, M. C. M., & Baird, D. J. (1993). Herbivory in the tilapia Oreochromis niloticus: a comparison of feeding rates on phytoplankton and periphyton. Journal of Fish Biology, 43(3), 385-392.
Dodds, W. K. (2003). The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 39(5), 840-849.
Drake, W. M., Scott, J. T., Evans-White, M., Haggard, B., Sharpley, A., Rogers, C. W., & Grantz, E. M. (2012). The effect of periphyton stoichiometry and light on biological phosphorus immobilization and release in streams. Limnology, 13(1), 97-106.
Dutta, R., Dutta, A., Bhagobaty, N., & Bhagabati, S. K. (2018). Periphyton community structure of Namsang stream, Arunachal Pradesh. COLDWATER FISHERIES SOCIETY OF INDIA, 1(1), 113-120.
Elias, S., & Banin, E. (2012). Multi-species biofilms: living with friendly neighbors. FEMS microbiology reviews, 36(5), 990-1004.
Ellwood, N. T., Di Pippo, F., & Albertano, P. (2012). Phosphatase activities of cultured phototrophic biofilms. Water research, 46(2), 378-386.
Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects A review. Journal of soil science and plant nutrition, 17(4), 897-911.
Feng, J., Wang, F., & Xie, S. (2011). Structure and dynamics of the periphytic algae of Jinyang Lake in Shanxi Province, North China. Acta Ecologica Sinica, 31(6), 310-316.
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633.
Gillett, N. D., Pan, Y., Asarian, J. E., & Kann, J. (2016). Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Science of the Total Environment, 541, 1382-1392.
Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R.,  & Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and soil, 337(1-2), 481-496.
Growns, I. O., & Growns, J. E. (2001). Ecological effects of flow regulation on macroinvertebrate and periphytic diatom assemblages in the Hawkesbury–Nepean River, Australia. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 17(3), 275-293.
Gubelit, Y. I., & Grossart, H. P. (2020). New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton?. Frontiers in Microbiology, 11, 1275.
Gurumayum, S. D., & Goswami, U. C. (2013). Studies on seasonal and topographical variations of periphyton in the rivers of Manipur. Journal of Environmental Biology, 34(3), 599.
Guschina, I. A., & Harwood, J. L. (2009). Algal lipids and effect of the environment on their biochemistry. In Lipids in aquatic ecosystems (pp. 1-24). Springer, New York, NY.
Hao, X. H., Liu, S. L., Wu, J. S., Hu, R. G., Tong, C. L., & Su, Y. Y. (2008). Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutrient Cycling in Agroecosystems, 81(1), 17-24.
Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and soil, 237(2), 173-195.
Huang, L. M., Thompson, A., & Zhang, G. L. (2014). Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity. Soil and Tillage Research, 142, 32-41.
Jonsson, P. R., Pavia, H., & Toth, G. (2009). Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proceedings of the National Academy of Sciences, 106(27), 11177-11182.
Kasai, F. (1999). Shifts in herbicide tolerance in paddy field periphyton following herbicide application. Chemosphere, 38(4), 919-931.
Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant and Soil, 272(1-2), 291-300.
Keshavanath, P., Gangadhar, B., Ramesh, T. J., Van Dam, A. A., Beveridge, M. C. M., & Verdegem, M. C. J. (2004). Effects of bamboo substrate and supplemental feeding on growth and production of hybrid red tilapia fingerlings (Oreochromis mossambicus× Oreochromis niloticus). Aquaculture, 235(1-4), 303-314.
Koedooder, C., Stock, W., Willems, A., Mangelinckx, S., De Troch, M., Vyverman, W., & Sabbe, K. (2019). Diatom-bacteria interactions modulate the composition and productivity of benthic diatom biofilms. Frontiers in microbiology, 10, 1255.
Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and soil, 252(1), 151-167.
Larned, S. T., & Santos, S. R. (2000). Light-and nutrient-limited periphyton in low order streams of Oahu, Hawaii. Hydrobiologia, 432(1-3), 101-111.
Larras, F., Lambert, A. S., Pesce, S., Rimet, F., Bouchez, A., & Montuelle, B. (2013). The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicology and environmental safety, 98, 162-170.
Laspidou, C. S., & Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water research, 36(11), 2711-2720.
Lavadia, M. G. B., Dagamac, N. H. A., & de la Cruz, T. E. (2017). Diversity and biofilm inhibition activities of algicolous fungi collected from two remote islands of the Philippine archipelago. Curr Res Environ Appl Mycol, 7(4), 309-21.
Ledger, M. E., & Hildrew, A. G. (1998). Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshwater Biology, 40(4), 655-670.
Lee, Y. M., Cho, K. H., Hwang, K., Kim, E. H., Kim, M., Hong, S. G., & Lee, H. K. (2016). Succession of bacterial community structure during the early stage of biofilm development in the Antarctic marine environment. Korean Journal of Microbiology, 52(1), 49-58.
Liu, J., Danneels, B., Vanormelingen, P., & Vyverman, W. (2016a). Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water research, 92, 61-68.
Liu, J., Liu, W., Wang, F., Kerr, P., & Wu, Y. (2016b). Redox zones stratification and the microbial community characteristics in a periphyton bioreactor. Bioresource Technology, 204, 114-121.
Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H. Q., ... & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresource technology, 241, 1127-1137.
Lu, H., Feng, Y., Wu, Y., Yang, L., & Shao, H. (2016a). Phototrophic periphyton techniques combine phosphorous removal and recovery for sustainable salt-soil zone. Science of the Total Environment, 568, 838-844.
Lu, H., Liu, J., Kerr, P. G., Shao, H., & Wu, Y. (2017). The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Science of the Total Environment, 578, 74-80.
Lu, H., Wan, J., Li, J., Shao, H., & Wu, Y. (2016b). Periphytic biofilm: A buffer for phosphorus precipitation and release between sediments and water. Chemosphere, 144, 2058-2064.
Lu, H., Yang, L., Shabbir, S., & Wu, Y. (2014a). The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research, 21(14), 8782-8791.
Lu, H., Yang, L., Zhang, S., & Wu, Y. (2014b). The behavior of organic phosphorus under non-point source wastewater in the presence of phototrophic periphyton. Plos one, 9(1), e85910.
Ma, Q., Zhang, F., Rengel, Z., & Shen, J. (2013). Localized application of NH 4+-N plus P at the seedling and later growth stages enhances nutrient uptake and maize yield by inducing lateral root proliferation. Plant and Soil, 372(1-2), 65-80.
Mailafia, S., & Agbede, S. A. (2016). Evaluation of Bacterial and Fungal Isolates of Biofilm of Water Distribution Systems and Receptacles in Abuja, Nigeria. European Journal of Experimental Biology, 6(4), 12-19.
Maitra, N., Manna, S. K., Samanta, S., Sarkar, K., Debnath, D., Bandopadhyay, C., ... & Sharma, A. P. (2015). Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia, 745(1), 69-83.
Makk, J., Beszteri, B., Ács, É., Márialigetl, K., & Szabó, K. (2003). Investigations on diatom-asso-ciated bacterial communities colonizing an artificial substratum in the River Danube. Large Rivers, 249-265.
Martin, J. L. (2013). Hydro-environmental analysis: freshwater environments. CRC Press.
Morris, J. J., Lenski, R. E., & Zinser, E. R. (2012). The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. MBio, 3(2).
Murdock, J. N., & Dodds, W. K. (2007). Linking benthic algal biomass to stream substratum topography 1. Journal of Phycology, 43(3), 449-460.
Nakanishi, K., Takakura, K. I., Kanai, R., Tawa, K., Murakami, D., & Sawada, H. (2014). Impacts of environmental factors in rice paddy fields on abundance of the mud snail (Cipangopaludina chinensis laeta). Journal of Molluscan Studies, 80(4), 460-463.
Ongley, E. D., Xiaolan, Z., & Tao, Y. (2010). Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution, 158(5), 1159-1168.
Pandit, A. K., Farooq, S., & Shah, J. A. (2014). Periphytic algal community of Dal Lake in Kashmir Valley, India. Research Journal of Environmental Sciences, 8(7), 391.
Pereira, I., Ortega, R., Barrientos, L., Moya, M., Reyes, G., & Kramm, V. (2009). Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. Journal of applied phycology, 21(1), 135-144.
Polunin, N. V. C. (1988). Efficient uptake of algal production by a single resident herbivorous fish on the reef. Journal of Experimental Marine Biology and Ecology, 123(1), 61-76.
Poulíčková, A., Hašler, P., Lysáková, M., & Spears, B. (2008). The ecology of freshwater epipelic algae: an update. Phycologia, 47(5), 437-450.
Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnology advances, 34(1), 14-29.
Rodríguez, P., Tell, G., & Pizarro, H. (2011). Epiphytic algal biodiversity in humic shallow lakes from the Lower Paraná River Basin (Argentina). Wetlands, 31(1), 53-63.
Round, F. E. (1991). Diatoms in river water-monitoring studies. Journal of applied phycology, 3(2), 129-145.
Saikia, S. K. (2011). Review on Periphyton as Mediator of nutrient transfer in aquatic ecosystems. Ecologia Balkanica, 3(2).
Saikia, S. K., Nandi, S., & Majumder, S. (2013). A review on the role of nutrients in development and organization of periphyton. Journal of Research in Biology, 3(1), 780-788.
Salamone, A. L., Robicheau, B. M., & Walker, A. K. (2016). Fungal diversity of marine biofilms on artificial reefs in the north-central Gulf of Mexico. Botanica Marina, 59(5), 291-305.
Samonte, S. O. P., Wilson, L. T., Medley, J. C., Pinson, S. R., McClung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: relationships with grain yield, grain protein, and yield‐related traits in rice. Agronomy journal, 98(1), 168-176.
Santos, T. R. D., & Ferragut, C. (2018). Changes in the taxonomic structure of periphytic algae on a free-floating macrophyte (Utricularia foliosa L.) in relation to macrophyte richness over seasons. Acta Botanica Brasilica, 32(4), 595-601.
Shafqat, M. N., & Pierzynski, G. M. (2014). The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils. Chemosphere, 99, 72-80.
Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516-525.
Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: where do we go from here?. Trends in ecology & evolution, 24(4), 201-207.
Stock, W., Blommaert, L., De Troch, M., Mangelinckx, S., Willems, A., Vyverman, W., & Sabbe, K. (2019). Host specificity in diatom–bacteria interactions alleviates antagonistic effects. FEMS Microbiology Ecology, 95(11), fiz171.
Su, J., Kang, D., Xiang, W., & Wu, C. (2017). Periphyton biofilm development and its role in nutrient cycling in paddy microcosms. Journal of Soils and Sediments, 17(3), 810-819.
Thompson, F. L., Abreu, P. C., & Wasielesky, W. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203(3-4), 263-278.
Wardle, D. A., Nilsson, M. C., & Zackrisson, O. (2008). Fire-derived charcoal causes loss of forest humus. Science, 320(5876), 629-629.
Whitton, B. A., & Roger, P. A. (1989). Use of blue-green algae and Azolla in rice culture.
Wu, Y. (2013). The studies of periphyton: From waters to soils. Hydrology: Current Research, 4, e107.
Wu, Y. (2013). The studies of periphyton: From waters to soils. Hydrology: Current Research, 4, e107.
Wu, Y., Liu, J., & Rene, E. R. (2018). Periphytic biofilms: a promising nutrient utilization regulator in wetlands. Bioresource technology, 248, 44-48.
Wu, Y., Liu, J., Lu, H., Wu, C., & Kerr, P. (2016). Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields. Environmental Science and Pollution Research, 23(21), 21377-21384.
Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H., & Zhang, N. (2011). Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology, 13(3), 604-615.
Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., ... & Hu, S. (2013). Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil, 370(1-2), 527-540.
Yang, J., Tang, C., Wang, F., & Wu, Y. (2016). Co-contamination of Cu and Cd in paddy fields: using periphyton to entrap heavy metals. Journal of hazardous materials, 304, 150-158.
Zhang, B., Shi, Y. T., Liu, J. H., & Xu, J. (2017). Economic values and dominant providers of key ecosystem services of wetlands in Beijing, China. Ecological Indicators, 77, 48-58.
Zhang, W., Ma, W., Ji, Y., Fan, M., Oenema, O., & Zhang, F. (2008). Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems, 80(2), 131-144.
Zhou, L., Rong, X. M., Xie, G. X., Wang, X., & Xie, Y. (2014). Effects of different nitrogen fertilizers on rice yield and nitrogen use efficiency. Soils, 46(6), 971-975.
Zhu, J. G., Liu, G., Han, Y., Zhang, Y. L., & Xing, G. X. (2003). Nitrate distribution and denitrification in the saturated zone of paddy field under rice/wheat rotation. Chemosphere, 50(6), 725-732.