Aminyavari, S., Saghafian, B. and Delavar, M. (2018). Evaluation of TIGGE ensemble forecasts of precipitation in distinct climate regions in Iran. Advances in Atmospheric Sciences, 35(4), 457–468
Ebert, E. E., Manton M. J., Arkin, P. A., Allam, R. J., Holpin, C. E. and Gruber A. (1996). Results from the GPCP Algorithm Intercomparison Programme. Bulletin of the American Meteorological Society, 77(12), 2875–2887
Gupta, R., Bhattarai, R., and Mishra, A. (2019). Development of Climate Data Bias Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of India. Journal of Water, 11(5), 1102.
Hamill, T. M., Engle, E., Myrick, D., Peroutka, M., Finan, C. and Scheuerer, M. (2017). The U.S. national blend of models for statistical post processing of probability of precipitation and deterministic precipitation amount. Monthly Weather Review, 145(9), 3441–3463.
Javanmard, M., Delavar, M., and Morid, S. (2016). Evaluation and uncertainty analysis of the results of the global weather forecast models to apply in flood warning systems (case study: Karoon River basin, Iran). Iran-Water Resources Research, 14(3), 1-14. (In Farsi)
Kay, J. K. and kim, H. M. (2014). Characteristics of initial perturbations in the ensemble prediction system of the Korea Meteorological Administration. A merican Meteorological Society, 29(3), 563-581.
Kim, K. B., Kwon, H. H. and Han, D. (2016). Precipitation ensembles conforming to natural variations derived from a regional climate model using a new bias correction scheme. Hydrology and Earth System Sciences, 20(5), 2019-2034.
Liu, Y. and Fan, K. (2014). An application of hybrid downscaling model to forecast summer precipitation at stations in China. Atmospheric Research, 143( 45), 17–30 .
Park, Y., Buizza, R., Leutbecher, M. (2008). TIGGE: preliminary results on comparing and combining ensembles. Quarterly Journal of the Royal Meteorological Society, 134(637), 2029-2050.
Piani, C., Haerter, J. O., Coppola, E. (2010). Statistical bias correction for daily precipitation in regional climate models over Europe. Springer, 99(29), 187-192.
Rahimi, J., Ebrahimpour, M. and Khalili, A. (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and applied climatology, 112(3-4), 409-418.
Su, X., Yuan, H. L., Zhu, Y. J., Luo, Y. and Wang, Y. ( 2014). Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. Journal of Geophysical Research, 119(12), 7292–7310.
Tao, Y., Duan, Q., Ye, A., Gong, W., Di, Z h., Xiao, M. and Hsu, K. (2014). An evaluation of post-processed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. Journal of hydrology, 519(27), 2890-2905.
Taraphdar, S., Mukhopadhyay, P., RubyLeung, L., Kiranmayi, L. (2016). Prediction skill of tropical synoptic scale transients from ECMWF and NCEP Ensemble Prediction Systems. Math.Clim.WeatherForecast, 2(4), 26-42.
Themeßl, M. J., Gobiet, A., and Heinrich, G. (2012). Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climate Change, 112(), 449– 468.
Tomasella, J., Sene, G. A., Schneider, F. A., Oliveira, C. R., Rodrigues, D. F. L., Rodriguez, D. A., Rodrigues, P. MC., Negra˜o, A. C., Sueiro, M. G. and Chagas, S. G. (2019). Probabilistic flood forecasting in the Doce Basin in Brazil:effects of the basin scale and orientation and the spatial distribution of rainfall. Flood Risk Management, 12(1), 12452.
Yamaguchi, M. and Majumdar S. J. (2010). Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Monthly Weather Review, 138(9), 3634–3655.
Wood , A. and Schaake, J. (2008). Correcting errors in streamflow forecast ensemble mean and spread. Journal of Hydrometeorology, 9(1), 132-148.
Wilks, D. S. (2006). Statistical Methods in Atmospheric Sciences (2nd edition.). Elsevier Science & Technology Books: Amsterdam. The Netherlands