Azari, T. and Samani, N. (2018). Modeling the Neuman’s well function by an artificial neural network for the determination of unconfined aquifer parameters. Computational Geosciences, 22(4), 1135-1148.
Chelsea, Q. and Wan, Y. (2013). Time series modeling and prediction of salinity in the Caloosahatchee River Estuary. Water Resources Research, 49(9), 5804-5816.
Dong, Y., Li, G. and Xu, H. (2012). An aerial recharge and discharge simulating method for MODFLOW. Computers & geosciences, 42, 203-205
Harbaugh, A.W., Banta, E.R., Hill, M.C. and McDonald, M.G. (2000). MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process. Open-file Report. U. S. Geological Survey, (92), 134.
Hendrickx, J.M.H. and Walker, G.R. (1997). Recharge from precipitation. In: Simmers, I., Balkema, A.A. (Eds.), Recharge of Phreatic Aquifers in (Semi-) Arid Areas. Rotterdam, The Netherlands, 19–111.
Huang, G.-B., Zhu, Q.-Y. and Siew, C.-K. (2006). Extreme learning machine: theory and applications. Neurocomputing 70, 489–501.
Kheradpisheh, Z., Talebi, A., Rafati, L., Ghaneian, M.T. and Ehrampoush, M.H. (2015). Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran. Desert, 20(1), 65-71.
Lerner, D. N., Issar, A. S., Simmers, I. (1990). Groundwater recharge: a guide to understanding and estimating natural recharge. Hannover: Heise, (8), 99-228.
Liang, N.Y., Huang, G.B., Saratchandran, P. and Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Networks, 22 (17), 1411–1423.
McDonald M.G. and Harbaugh A.W. (1988). A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations, 06-A1, USGS.
Nofal, E.R., Amer, M.A., El-Didy, S.M. and Fekry, A.M. (2015). Delineation and modeling of seawater intrusion into the Nile Delta Aquifer: a new perspective. Water Science, 29(2), 156-166.
Priyanka, B.N. and Mahesha, A. (2015). Parametric studies on saltwater intrusion into coastal aquifers for anticipate sea level rise. Aquatic Procedia, 4, 103-108.
Roshni, T., Jha, M.K., Deo, R.C., and Vandana, A. (2019). Development and evaluation of hybrid artificial neural network architectures for modeling spatio-temporal groundwater fluctuations in a complex aquifer system. Water Resources Management, 1-17. doi.org/10.1007/s11269-019-02253-4
Salami Shahid, E. and Ehteshami, M. (2016). Application of artificial neural networks to estimating DO and salinity in San Joaquin River basin. Desalination and Water Treatment, 57(11), 4888-4897.
Vaheddoost, B. and Aksoy, H. (2018). Interaction of groundwater with Lake Urmia in Iran. Hydrological Processes, 32(21), 3283-3295.
Yang, X., Zhang, H. and Zhou, H. (2014). A hybrid methodology for salinity time series forecasting based on wavelet transform and NARX neural networks. Arabian Journal for Science and Engineering, 39(10), 6895-6905.