Adarsh, S. VishnuPriya, M. S. Narayanan, S. Smruthi, M. S. George, P. & Benjie, N. M. (2016), Trend analysis of sediment flux time series from tropical river basins in India using non-parametric tests and multiscale decomposition. Modeling Earth Systems and Environment, 2(4), 187.
Adnan, R. M. Yuan, X. Kisi, O. & Yuan, Y. (2017). Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 29(1), 286-294.
Alizadeh, M. J. Kavianpour, M. R. Kisi, O. & Nourani, V. (2017). A new approach for simulating and forecasting the rainfall-runoff process within the next two months. Journal of Hydrology, 548, 588–597.
Amirat, Y. Benbouzidb, MEH. Wang, T. Bacha, K and Feld, G. (2018), EEMD-based notch filter for induction machine bearing faults detection, Applied Acoustics, 133: 202–209.
Aussem, A. Campbell, J. and Murtagh, F. (1998), Wavelet-based feature extraction and decomposition strategies for financial forecasting, Journal of Computational Finance, 6 (2): 5–12.
Behzadi, M. Asghari, K. Aazi, M and Palhang, M. (2009), Generalization performance of support vector machines and neural networks in runoff modeling, Expert Systems with Applications, 36: 7624-7629.
Danandeh Mehr, A. Kahya, E and Olyaie, E.(2013), Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique, Journal of Hydrology, 505: 240-249.
Farajzadeh, J and Alizadeh, F. (2018), A hybrid linear–nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model, Journal of Hydroinformatics, 20 (1): 246–262.
Kisi, O. and Cobaner, M. (2009), Modeling river stage-discharge relationship using different neural network computing techniques, 37 (2): 160-169.
Kisi, O. and Cimen, M. (2011), A wavelet-support vector machine conjunction model for monthly stream flow forecasting, Journal of Hydrology, 399: 132 –140.
Kisi O. and Shiri J. (2011), Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models, Water Resource management, 25: 3135 –3152.
Modaresi, F. Araghinejad, S. & Ebrahimi, K. (2017). A Comparative Assessment of Artificial Neural Network, Generalized Regression Neural Network, Least-Square Support Vector Regression, and K-Nearest Neighbor Regression for Monthly Streamflow Forecasting in Linear and Nonlinear Conditions. Water Resources Management, 1-16.
Roushangar, K. Mehrabani, F. V. and Alami, M. (2013), Forecasting daily stream flows of vaniar river using Genetic Programming and Neural Networks approaches, J. Civil Eng, Urban,3 (4): 197- 200.
Roushangar, K. Alizadeh, F. and Adamowski, J. (2018), Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscaleentropy approach, Environmental Research, 165: 176–192.
Seyam, M. Othman, F. & El-Shafie, A. (2017). Prediction of Stream Flow in Humid Tropical Rivers by Support Vector Machines. In MATEC Web of Conferences (Vol. 111, p. 01007). EDP Sciences.
Tiwari, M. K. & Adamowski, J. F. (2014), Medium-term urban water demand forecasting with limited data using an ensemble wavelet–bootstrap machine-learning approach. Journal of Water Resources Planning and Management, 141(2): 04014053.
Wu, Z. Huang, NE. (2004), A study of the characteristics of white noise using the empirical mode decomposition method, Proc RS Lond 460A: 1597–1611.
Wu, Z. and Huang, N. E. (2009), Ensemble empirical mode decomposition: a noise-assisted data analysis method, Advances in Adaptive Data Analysis, 104 (38): 14889–14894.