Al-Ogaidi, A. A. Wayayok, A. Rowshon, M. K. and Abdullah, A. F. (2016). Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management, 176, 203-213.
Autovino, D. Rallo, G. and Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural Water Management, 203, 225-235.
Besharat, S. and Mollaee Tavani, S. (2016). Simulation of soil water profile in surface and subsurface drip irrigation systems by HYDRUS-2D. Journal of Water and Soil Conservation, 23(2), 225-238.
Chu, S.T. (1994). Green-Ampt analysis of wetting patterns for surface emitters. ASCE J. Irrig. Drain. Engr., 120, 414–421.
Elmaloglou, S. and Diamantopoulos, E. (2009). Simulation of soil water dynamics under subsurface drip irrigation from line sources. Agricultural Water Management, 96(11), 1587-1595.
Esfandiari, M. and Maheshvari, B.L. (2001). Field evaluation of surface irrigation models. Agricultural Engineering Research. 79(4):459-479.
Fatahi Nafchi,R., Mosavi,F. and Parvanak, K. (2011). Experiential study shape and volume of wetted soil in trickle irrigation method. African Journal of Agricultural Research, 6 (2), 458-466.
Kandelous, M. M. and Šimůnek, J. (2010a). Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrigation Science, 28(5), 435-444.
Kandelous, M.M. and Simunek, J. (2010b).Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D.
Agricultural Water Management, 97(7), 1070-1076.
Karimi1, B. Mirzaei, F and Sohrabi, T.(2013). Evaluation of Moisture Front Redistribution in Surface and Subsurface Drip Irrigation Systems. Soil and Water science Journal, 23(3),183-192.
Khalili, M. Akbari, M. Hezarjaribi, A. Zakerinia, M. and Abbasi, F. (2014). Numerical versus empirical models for estimating wetting patterns in subsurface drip irrigation systems. J. Agri. Eng. Res, 15(2), 1-14.
Liu, H. F. Génard, M. Guichard, S. and Bertin, N. (2007). Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany, 58(13), 3567-3580.
Mattar, M. A., & Alamoud, A. I. (2017). Gene expression programming approach for modeling the hydraulic performance of labyrinth-channel emitters. Computers and Electronics in Agriculture, 142, 450-460.
Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. Physics. 1, 318_333.
Patel, N. and Rajput, T. B. S. (2007). Effect of drip tape placement depth and irrigation level on yield of potato. Agricultural water management, 88(1), 209-223.
Shan, G. Sun, Y. Zhou, H. Lammers, P. S. Grantz, D. A. Xue, X. and Wang, Z. (2019). A horizontal mobile dielectric sensor to assess dynamic soil water content and flows: Direct measurements under drip irrigation compared with HYDRUS-2D model simulation. Biosystems Engineering, 179, 13-21
Simunek, J. Sejna, M. and van Genuchten, M. Th. (1999). The HYDRUS-2D software package for simulating two dimensional movement of water, heat and multiple solutes in variably saturated media, Version 2.0. Rep. IGCWMC-TPS-53, p 251, Intl. Ground Water Modeling Center, School of Mines, Colorado.
Singh, D. K. Rajput, T. B. S. Sikarwar, H. S. Sahoo, R. N. and Ahmad, T. (2006). Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agricultural water management, 83(1-2), 130-134.
Van Genuchten MT (1980). A closed-form equation for predicting hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 44, 892–898
Walker, W. R. (2005). Multilevel calibration of furrow infiltration and roughness. Journal of irrigation and drainage engineering, 131(2), 129-136.
Wang, X. Youssef, M. A. Skaggs, R. W. Atwood, J. D. and Frankenberger, J. R. (2005). Sensitivity analyses of the nitrogen simulation model, DRAINMOD-N II. Transactions of the ASAE, 48(6), 2205-2212.