Agirre, U., Goni, M., Lopez, J.J., and Gimena, .F.N. (2005). Application of a unit hydrograph based on subwatershed division and comparison with Nash's instantaneous unit hydrograph. CATENA, 64(2-3): 321-332.
Ahmad, M.M., Ghumman, A.R., Ahmad, S., and Hashmi, H.N. (2010). Estimation of a unique pair of Nash model parameters: an optimization approach. Water Resour Manage, DOI 10.1007/s11269-010-9590-3. 19p.
Bahremand, A., and Mostafazadeh, R. (2009). Mathematical computation of Nash model parameters for hydrograph prediction. 3rd International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources, France, 1-4.
Bahremand, A., and Mostafazadeh, R. (2010). Comparison of different methods for parameter estimation of Nash’s Instantaneous Unit Hydrograph in Jafarabad Watershed. Watershed Management Researches (Pajouhesh and Sazandegi), 86: 42-51. (In Farsi)
Bardossy, A. (2007). Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 11: 703-710.
Bardossy, A., and Sing, K. (2008). Robust estimation of hydrological model parameters. Hydrology and Earth System Sciences, 12: 1273-1283.
Behmanesh, J., Khanmohammadi, N., and AmirAtaei, B. (2016). Comparison evaluation of Nash and Hybrid models parameters estimation methods in order to model rainfall-runoff process (Case study: Alandchay Watershed). Soil and Water Research, 47(1): 25-33. (In Farsi)
Beven, K.J. (2001). Rainfall-runoff modelling the primer. Chichester, New York, Weinheim, Brisbane, Singapore, Toronto. 360p.
Beven, K.J., and Freer, J.E. (2001). Equifinality, data assimilation, and data uncertainty estimation in mechanistic modelling of complex environmental system using the GLUE methodology. Hydrology, 249: 11-29.
Blasone, R.S., Madsen, H., and Rosbjerg, D. (2007). Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques. Nordic Hydrology, 38 (4-5): 451-476.
Chow, V.T., Maidment, D.R., Mays, L.W. (1988). Applied Hydrology. McGraw-Hill science. NY, USA.
Ghumman, A.R., Ahmad, M.M., Hashmi, H.N., and Kamal, M.A. (2011). Regionalization of hydrologic parameters of Nash mode. Water Resour Manage, 38(6): 735-744.
Hosseini, S.M., Zahraie, B., and Hourfar, A. (2006). Parameter estimation of Nash conceptual model using genetic algorithm and ordinary least square methods. Water Resources Research, 2(2): 10-12.
Jaiswal, R.K., Thomas, T., Galkate, R.V., Ghosh, N.C., Lohani, A.K., and Kumar, R. (2014). Development of geomorphology based regional Nash model for data scares central india region. Water Resour Manage, 28: 351-371.
Karabova, B., Sikorska, A.E., Banasik, K., and Kohnova, S. (2012). Parameters determination of a conceptual rainfall-runoff model for a small catchment in Carpathians. Land Reclamation, 44(2): 155-162.
Kumar Himanshu, S., Pandey, A., and Palmate, S.S. (2015). Derivation of Nash model parameters from geomorphological instantaneous unit hydrograph for a Himalayan river using Aster Dem. Proceedings of International Conference on Structural Architectural and Civil Engineering. 21-22, Nov, Dubai, 234-239.
Kumar, R., Chatterjee, C., Lohani, A.K., Kumar, S. (2004). GIUH based Clark and Nash models for runoff estimation for an ungauged basin and their uncertainty analysis. International Journal of River Basin Management, 2(4): 281-290.
Lee, J.H., Yoon, K.L., Jeong, S., and Lee, E.T. (2003). Mapping of Floodplain Boundaries Using High Spatial Resolution DEM, AUTH, Thessaloniki. Greece, XXX IAHR: 833-835.
Li, C., Guo, S., Zhang, W., and Zhang, J. (2008). Use of Nash’s IUH and DEMs to identify the parameters of an unequal-reservoir cascade IUH model. Hydrological Processes, 22: 4073-4082.
Liu, J., Liu, T., Bao, A., De Maeyer, Ph., Kurban, A., and Chen, X. (2016). Response of hydrological processes to input data in high Alpine catchment: An assessment of the Yarkant river basin in China. Water, 8(181): 1-15.
Magar, R.B., and Jothiprakash, V. (2014). Nash IUH parameters estimation using method of moments- a case study. Journal of Indian Water Resources Society, 34(2): 1-8.
Mostafazadeh, R., Bahremand, A., Zabihi, M. (2015). Efficiency evaluation of Diskin method in derivation of Instantaneous Unit Hydrograph in Jafar-Abad watershed, Golestan Province. Ecohydrology, 2(2): 141-150. (In Farsi)
Nash, J.E. (1957). The form of the Instantaneouse Unit Hydrograph. IASH Publication, 45(3). 114-121.
Nash, J.E. (1959). Systematic determination of unit hydrograph parameters. Geophysical Research, 64(1): 111-115.
Ocak, A., and Bayazit, M. (2003). Linear reservoirs in series model for unit hydrograph of finite duration. Turkish Journal of Engineering and Environmental Sciences, 27: 107-113.
Raghunath, H.M. (2006). Hydrology: Principles, Analysis and Design. New Age International, 476p.
Ramirez, J.A. (2000). Prediction and Modeling of Flood Hydrology and Hydraulics. Chapter 11. Water Resources, Hydrologic and Environmental Sciences, 53p.
Sen, Z. (2008). Wadi Hydrology. Istanbul Technical University Turkey. Taylor & Francis Group, 347p.
Singh, V.P. (1988). Hydrologic Systems. Rainfall-Runoff Modeling. Volume 1, Prentice-Hall, Englewood Cliffs, 360 p.
Sorooshian, S., and Gupta, V.K. (1995). Model calibration. In Computer Models of Watershed Hydrology, V.P. Singh (Ed.). Water Resources Publications, Colorado, 23–68.
USDA, Natural Resources Conservation Service (2007). Hydrographs. Chapter 16. Part 630 Hydrology. National Engineering Handbook. 50p.
Zakizadeh, F., and Malekinezhad, H. (2015). Comparison of methods for estimation of flood hydrograph characteristics.
Russian Meteorology and Hydrology, 40(12): 828-837.
Zakizadeh, F., and Talebi, A. (2016). Investigation of the efficiency of different methods for parameters estimation of Nash’s Instantaneous Unit Hydrograph in simulating flood hydrograph (Case study: Manshad Watershed). Watershed Management Research, 7(14): 197-205. (In Farsi)