AghaKouchak, A. and Habib, E. (2010). Application of a conceptual hydrologic model in teaching hydrologic processes. Int. J. Eng. Educ. 26, 963–973.
Beven, K.. and Binley. A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process., 6, 279-298.
Bezdek, J.C. (1974a). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1: 57–71.
Bezdek, J.C. (1974b). Cluster validity with fuzzy sets. Journal of Cybernetics, 3 (3), 58–72.
Breiman, Leo. (2001). Random forests. Mach. Learn, 45 (1), 5– 32.
Chang, C. H., Yang J.C. and Tung, Y.K. (1993). Sensitivity and uncertainty analysis of a sediment transport models: a global approach. Stochastic Hydrological Hydraulics, 7 (4), 299- 314 .
Dogulu, N., López López, P., Solomatine, D. P., Weerts, A. H. and Shrestha, D. L. (2015). Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol. Earth Syst. Sci., 19, 3181–3201.
Evin, G., Thyer, M. Kavetski, D. McInerney D. and Kuczera, G. (2014). Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and hetero-scedasticity. Water Resour. Res, 50 (3), 2350– 2375.
Fukuyama, Y. and Sugeno, M. (1989). A new method of choosing the number of clusters for the fuzzy c-means method. Proceedings of Fifth Fuzzy Systems Symposium, pp. 247–250 (in Japanese)
Houska, T., Multsch, P., Kraft, H., Frede, G. and Breuer, L. (2014). Monte Carlo-Based calibration and uncertainty analysis of a coupled plant growth and hydrological model. Biogeosciences, 11, 2069-2082.
Khu, S.T. and Werner, M.G.F. (2003). Reduction of monte-carlo simulation runs for uncertainty estimation in hydrological modeling. Hydrology and Earth System Sciences. 7 (5), 680-692.
Koenker, R. (2005). Quantile Regression, Cambridge University Press.
Koenker, R. and Bassett, J.r. (1978). Regression Quantiles, Econometrica, 1, 33–50.
López López, P., Verkade, J.S., Weerts, A .H. and Solomatine, D.P. (2014). Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the Upper Severn River: a comparison. Hydrol. Earth Syst. Sci. Discuss. 11 (4), 3811 – 3855.
Malone, B.P., McBratney, A.B. and Minasny, B. (2011). Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 160 (3– 4), 614-626.
Matott, L.S., Babendreier, J.E. and Purucker, S.T. (2009). Evaluating uncertainty in integrated environmental models: A review of concepts and tools. Water Resources Research, 45, W06421.
Montanari, A. (2011). Uncertainty of Hydrological Predictions. In: Peter Wilderer (ed.) Treatise on Water Science, vol 2. pp. 459–478 Oxford: Academic Press.
Rouhani, H. and Farahi Moghadam, M. (2014). Application of the Genetic Algorithm Technique for Optimization of the Hydrologic Tank and SIMHHYD Models’ Parameters. Journal Of Range and Watershed Management (Iranian Journal Of Natural Resources). 66(4), 521-533.
In Farsi).
Shrestha, D. L., and D. P. Solomatine (2006). Machine learning approaches for estimation of prediction interval for the model output , Neural Networks , 19 (2), 225 – 235, doi: 10.1016/ j.neunet. 2006. 01. 012.
Siebert, J. and Vis, M. J. P. (2012). Teachinghydrological modeling with a userfriendly catchment runoff-model software package, Earth Syst. Sci. 16, 3315-3325.
Solomatine, D. P. and Siek, M. B. (2006). Modular learning models in forecasting natural phenomena. Neural Networks, 19(2), 215-224.
Solomatine, D. P. and Shrestha, D. L. (2009). A novel method to estimate model uncertainty using machine learning techniques, Water Re-sour. Res., 45, W00B11.
Walker, W.E., Harremoës, P., Rotmans, J., Van der Sluis, J.P., Van Asselt, M.B.A., Janssen, P. and Krayer von Krauss M.P. (2003). Defining uncertainty a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment, 4 (1), 5-17
Weerts, A. H., Winsemius, H. C. and Verkade, J. S. (2011). Estima-tion of predictive hydrological uncertainty using quantile re-gression: examples from the National Flood Forecasting Sys-tem (England and Wales), Hydrol. Earth Syst. Sci., 15, 255–265.
Xu, T., and Valocchi, A .J.(2015). Data-driven methods to improve base flow prediction of a regional groundwater model. Computers & Geosciences. 85(B), 124–13.