Ali, I. (2010). The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Separation and Purification Reviews, 39(3-4), 95–171. https://doi.org/10.1080/15422119.2010.527802
An, Q., Miao, Y., Zhao, B., Li, Z., & Zhu, S. (2020). An alkali modified biochar for enhancing Mn²⁺ adsorption: Performance and chemical mechanism. Materials Chemistry and Physics, 248, 122895. https://doi.org/10.1016/j.matchemphys.2020.122895
Awasthi, M. K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., Li, D., Awasthi, S. K., Shen, F., Li, R., & Zhang, Z. (2017a). Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource Technology, 224, 428–438. https://doi.org/10.1016/j.biortech.2016.11.014
Awasthi, M. K., Wang, Q., Chen, H., Wang, M., Ren, X., Zhao, J., Li, J., Guo, D., Li, D., & Zhang, Z. (2017b). Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost. Bioresource Technology, 237, 156–166. https://doi.org/10.1016/j.biortech.2017.01.044
Banegas, V., Moreno, J. L., Moreno, J. I., García, C., León, G., & Hernández, T. (2007). Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Management, 27(10), 1317–1327. https://doi.org/10.1016/j.wasman.2006.09.008
Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9
Behera, S., & Samal, K. (2022). Sustainable approach to manage solid waste through biochar assisted composting. Energy Nexus, 7, 100121. https://doi.org/10.1016/j.nexus.2022.100121
Bremner, J. M. (1996). Nitrogen—Total. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3—Chemical methods (pp. 1085–1121). SSSA Inc.
Chen, B. L., Johnson, E. J., Chefetz, B., Zhu, L. Z., & Xing, B. S. (2005). Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility. Environmental Science & Technology, 39(16), 6138–6146. https://doi.org/10.1021/es050622q
Chen, X., Du, Z., Liu, D., Wang, L., Pan, C., Wei, Z., Jia, L., & Zhao, R. (2022). Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting. Biochar, 4(1), 48. https://doi.org/10.1007/s42773-022-00174-x
Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177–1181. https://doi.org/10.1016/j.chemosphere.2009.12.029
Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38(17), 4649–4655. https://doi.org/10.1021/es035034w
Dehkhoda, A. M., Ellis, N., & Gyenge, E. (2014). Electrosorption on activated biochar: Effect of thermo-chemical activation treatment on the electric double layer capacitance. Journal of Applied Electrochemistry, 44(1), 141–157. https://doi.org/10.1007/s10800-013-0616-4
Enev, V., Pospíšilová, L., Klučáková, M., Liptaj, T., & Doskočil, L. (2014). Spectral characterization of selected humic substances. Soil and Water Research, 9(1), 9–17.
https://doi.org/10.17221/39/2013-SWR
Everitt, B. S. (1995). The analysis of repeated measures: a practical review with examples.
Journal of the Royal Statistical Society: Series D (The Statistician), 44(1), 113-135.
https://doi.org/10.2307/2348622
Fierro, V., Muñiz, G., Basta, A.H., El-Saied, H., & Celzard, A. (2010). Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid.
Journal of Hazardous Materials, 181(1-3): 27-34.
https://doi.org/ 10.1016/j.jhazmat.2010.04.062
He, X., Yin, H., Han, L., Cui, R., Fang, C., & Huang, G. (2019). Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism.
Bioresource Technology, 271, 375–382.
https://doi.org/10.1016/j.biortech.2018.09.104
Ingle, P., Bhange, H., Gavit, B., & Purohit, R. (2017). Urban organic solid wastes as farmland manure and fertilizers: A review. International Journal of Current Microbiology and Applied Sciences, 6, 1487–1495.
Iran National Standard Organization. (2007). Compost - Physical and chemical characteristics (1st ed., Standard No. 10716). Tehran, Iran. (In Persian)
Jiang, J. S., Kang, K., Wang, C. J., Sun, X. J., Dang, S., Wang, N., Wang, Y., Zhang, C. Y., Yan, G. X., & Li, Y. B. (2018). Evaluation of total greenhouse gas emissions during sewage sludge composting by the different dicyandiamide added forms: Mixing, surface broadcasting, and their combination. Waste Management, 81, 94–103. https://doi.org/10.1016/j.wasman.2018.10.003
Jindo, K., Canellas, L. P., Albacete, A., Figueiredo dos Santos, L., Frinhani Rocha, R. L., Carvalho Baia, D., Canellas, N. O. A., Goron, T. L., & Olivares, F. L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy, 10(5), 640. https://doi.org/10.3390/agronomy10050640
Jones Jr., J. B., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. In R. L. Westerman (Ed.), Soil testing and plant analysis (pp. 389–427). SSSA Inc.
Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Publications.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2021). Investigating the effect of various surface and chemical modification approaches on corn residue and common reed derived-biochar traits. Applied Soil Research, 9(2): 73-86. (In Persian).
Kuo, S. (1996). Phosphorus. In D. L. Sparks (Ed.), Methods of soil analysis: Chemical methods. Part 3—Chemical methods (pp. 869–919). SSSA, ASA.
Lee, H. W., Kim, Y. M., Kim, S., Moon, D. H., Kwon, E. E., & Tsang, Y. F. (2018). Review of the use of activated biochar for energy and environmental applications. Carbon Letters, 26(1), 1–10. https://doi.org/10.5714/CL.2018.26.001
Li, D., Manu, M. K., Varjani, S., & Wong, J. W. (2023). Role of tobacco and bamboo biochar on food waste digestate co-composting: Nitrogen conservation, greenhouse gas emissions, and compost quality. Waste Management, 156, 44–54. https://doi.org/10.1016/j.wasman.2022.10.022
Li, R., Wang, Q., Zhang, Z., Zhang, G., Li, Z., Wang, L., & Zheng, J. (2015). Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.
Environmental Technology, 36(7), 815–826.
https://doi.org/10.1080/09593330.2014.963692
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy and Fuels, 28(8): 5119-5127. https://doi.org/10.1021/ef500725c
Lin, X., Wang, N., Li, F., Yan, B., Pan, J., Jiang, S., Peng, H., Chen, A., Wu, G., Zhang, J., Zhang, L., Huang, H., Luo, L. (2022). Evaluation of the synergistic effects of biochar and biogas residue on CO2 and CH4 emission, functional genes, and enzyme activity during straw composting.
Bioresource Technology, 360: 127608.
https://doi.org/10.1016/j.biortech.2022.127608
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Manu, M. K., Wang, C., Li, D., Varjani, S., Xu, Y., Ladumor, N., Lui, M., Zhou, J., & Wong, J. W. (2021). Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresource Technology, 341, 125871. https://doi.org/10.1016/j.biortech.2021.125871
Nguyen, M. K., Lin, C., Hoang, H. G., Sanderson, P., Dang, B. T., Bui, X. T., Nguyen, N. S. H., Vo, D. V. N., & Tran, H. T. (2022). Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere, 299, 134488. https://doi.org/10.1016/j.chemosphere.2022.134488
Panwar, N. L., & Pawar, A. (2020). Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Conversion and Biorefinery, 12(3), 1–23. https://doi.org/10.1007/s13399-020-00870-3
Prost, K., Borchard, N., Siemens, J., Kautz, T., Séquaris, J.-M., Möller, A., & Amelung, W. (2013). Biochar affected by composting with farmyard manure. Journal of Environmental Quality, 42(1), 164–172. https://doi.org/10.2134/jeq2012.0064
Puziy, A. M., Poddubnaya, O. I., Martínez-Alonso, A., Suárez-García, F., & Tascón, J. M. D. (2002). Characterization of synthetic carbons activated with phosphoric acid. Applied Surface Science, 200(1-4), 196–202. https://doi.org/10.1016/S0169-4332(02)00883-7
Schimmelpfennig, S., & Glaser, B. (2012). One step forward toward characterization: Some important material properties to distinguish biochars. Journal of Environmental Quality, 41(4), 1001–1013. https://doi.org/10.2134/jeq2011.0147
Schmidt, H. P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., & Leifeld, J. (Eds.). (2020). European biochar certificate—Guidelines for a sustainable production of biochar. European Biochar Foundation (EBC). http://www.european-biochar.org
Schmidt, H. P., Bucheli, T., Kammann, C., Glaser, B., Abiven, S., & Leifeld, J. (2016). European Biochar Certificate—Guidelines for a sustainable production of Biochar. European Biochar Foundation (EBC). https://doi.org/10.13140/RG.2.1.4658.7043
Singh, B., Camps-Arbestain, M., & Lehmann, J. (Eds.). (2017). Biochar: A guide to analytical methods. CSIRO Publishing.
Tabatabai, M.A., 1994. Soil Enzymes, in: Weaver, R.W., Angel, S., Bottomlet, P., Bezdicek, D., Smith, S., Tabatabai, A., Wollum, A. (Eds.), Methods of Soil Analysis, 2nd Ed. SSSA, Inc, Madison Wisconsin, USA, 775–833.
UNEP (United Nations Environment Programme) & International Solid Waste Association. (2024). Global Waste Management Outlook 2024—Beyond an age of waste: Turning rubbish into a resource.
Vithanage, M., Rajapaksha, A. U., Zhang, M., Thiele-Bruhn, S., Lee, S. S., & Ok, Y. S. (2015). Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 22(3), 2175–2186. https://doi.org/10.1007/s11356-014-3435-1
Wang, Y., Hu, Y., Zhao, X., Wang, S., & Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy & Fuels, 27(10), 5890–5899. https://doi.org/10.1021/ef400972z
Wang, Z., Xu, Y., Yang, T., Liu, Y., Zheng, T., & Zheng, C. (2023). Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar, 5(1), 3. https://doi.org/10.1007/s42773-022-00202-w
Yang, J., Yu, M., & Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21, 414–422. https://doi.org/10.1016/j.jiec.2014.02.054
Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Xiong, W. , Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285. https://doi.org/10.1016/j.resconrec.2018.10.004
Yeganeh, M., Bazargan, K., Shahbazi, K., Hamedi, F., Keshavarz, P., Bybordi, A., Rahmani, H. and Hasheminasab, K. (2025). Monitoring the quality of municipal solid waste compost produced in Iran.
Iranian Journal of Soil and Water Research,
56(2),293-307. https://doi.org/
10.22059/ijswr.2024.384512.669824. (In Persian).
Zhang, J., Chen, G., Sun, H., Zhou, S., & Zou, G. (2016). Straw biochar hastens organic matter degradation and produces nutrient-rich compost. Bioresource Technology, 200, 876–883. https://doi.org/10.1016/j.biortech.2015.11.002
Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22(2), 54–57.