ارزیابی تغییرات مکانی برخی عناصر غذایی خاک با استفاده از روش‌های زمین‌آماری (مطالعه موردی: شهرستان چادگان، استان اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

ارزیابی تنوع مکانی و پهنه‌بندی ویژگی‌های مختلف خاک پیش‌نیاز مهمی برای کشاورزی دقیق است. این پژوهش با هدف بررسی تغییرات مکانی برخی عناصر غذایی قابل‌استفاده گیاه در خاک شامل ماده آلی، فسفر، پتاسیم، آهن، روی، مس و منگنز بر روی 84 نمونه خاک از اراضی مناطق مختلف شهرستان چادگان (استان اصفهان)، انجام شد. همبستگی مکانی هر متغیر با نیم‌تغییرنما مشخص و بهترین مدل برازش داده‌شده برای هر متغیر تهیه شد. روش‌های درون‌یابی با استفاده از روش‌های کریجینگ معمولی و روش وزن‌دهی عکس فاصله با توان‌های 1 تا 3 انجام شد و میزان دقت نقشه پراکنش این متغیرها با معیارهای آماری میانگین انحراف خطا و ریشه میانگین مربعات خطای استاندارد و ضریب تبیین محاسبه شد. نتایج تجزیه زمین‌آماری نشان داد که همه متغیرهای موردبررسی، از همبستگی مکانی متوسطی در سطح منطقه برخوردار هستند که نشان‌دهنده تأثیر عوامل مدیریتی مانند کوددهی، شخم، آبیاری و ... بر روی این متغیرها است. بهترین مدل ساختار مکانی برای متغیرهای ماده آلی، فسفر، پتاسیم و روی مدل نمایی و برای متغیرهای آهن، مس و منگنز کروی بود. بر اساس نتایج، برای متغیرهای فسفر، روی و منگنز روش وزن‌دهی عکس فاصله با توان 1 و برای سایر متغیرها روش کریجینگ معمولی  به‌ عنوان بهترین روش‌های درون‌یابی شناخته شدند. بر اساس نقشه‌های پهنه‌بندی، منطقه از نظر عناصر غذایی پتاسیم، مس و منگنز در حد کفایت بوده و در سایر موارد مصرف کود و مواد آلی برای افزایش حاصلخیزی خاک ضروری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial variability assessment of some soil nutrient elements using geostatistical methods (Case study: Chadegan, Isfahan province)

نویسندگان [English]

  • Alireza Marjovvi
  • parisa MASHAYEKHI
Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran
چکیده [English]

Evaluating the spatial variability of soil properties is an important prerequisite for precision agriculture. This research was conducted on 84 soil samples from different areas of Chadegan city (Isfahan province). With the aim of evaluating the spatial variability of some soil nutrient elements, including organic carbon, soil-available phosphorus, potassium, zinc, copper, manganese, and iron. The spatial correlation of each variable with a specific semi-variable and the best fitting model for each variable were selected. Interpolation was done using normal Kriging and Inverse Distance Weighting with powers of 1 to 3 methods. The accuracy of the distribution maps of these variables was evaluated by the Mean bias error (MBE) the standard root mean square error (NRMSE), and the coefficient of determination (R2). The results showed that all studied properties had moderate spatial dependence, which shows the effect of management factors such as fertilization, plowing, irrigation, etc. on these variables. The exponential model was the most accurate to predict organic carbon, phosphorus, potassium and zink variables while iron, copper, and manganese were best fitted with an spherical model. For phosphorus, iron, and copper variables, the Inverse Distance Weighting with the power of 1 (IDW-1) and for organic carbon, potassium, zinc, and manganese normal kriging methods were recognized as the best interpolation methods. According to the spatial distribution maps, the studied area is sufficient in terms of potassium, copper and manganese nutrients, and in other cases, the use of fertilizers and organic materials is necessary to increase soil fertility.

کلیدواژه‌ها [English]

  • GS+ software
  • semi-variable
  • soil fertility spatial distribution

Spatial variability assessment of some soil nutrient elements using geostatistical methods (Case study: Chadegan, Isfahan province)

EXTENDED ABSTRACT

Introduction

The existence of spatial variability in soil properties entails site-specific management for balanced plant nutrition towards achieving sustainable crop production which is the epitome of precision agriculture. In this respect, the application of geostatistical techniques is becoming standard for input-based crop production. spatial variability mapping is an efficient geospatial tool and technique for the diagnosis of nutrient-related limitations and their management. The aim of this study was to evaluate the spatial variability and frequency distribution of some soil nutrient elements, including organic carbon, soil-available phosphorus, potassium, zinc, copper, manganese, and iron.

Methods

The study was conducted on 84 soil samples, in agricultural lands of Chadegan (Isfahan province). The spatial correlation of each variable with a specific semi-variable and the best fitting model for each variable were selected using GS+ version 9 software. Interpolation was done using normal Kriging and Inverse Distance Weighting with powers of 1 to 3 methods. The accuracy of the distribution maps of these variables was evaluated by the Mean bias error (MBE) the standard root mean square error (NRMSE), and the coefficient of determination (R2).

Results and Discussion

The results of the geostatistical analysis showed that all studied properties including organic carbon, soil-available phosphorus, potassium, zinc, copper, manganese and iron had moderate spatial dependence. The moderate spatial dependence could result from variation in environmental factors such as flood water, irrigation, fertilizers addition, high water table level or agriculture practices, and different agricultural managements. The exponential model was the most accurate to predict organic carbon, phosphorus, potassium and zink variables while iron, copper, and manganese were best fitted with an spherical model. Also, among the studied characteristics, organic carbon, phosphorus, and potassium had the smallest effective range respectively. For phosphorus, iron, and copper variables, the Inverse Distance Weighting with the power of 1 (IDW-1) and for organic carbon, potassium, zinc, and manganese normal kriging methods were recognized as the best interpolation methods. Spatial distribution maps according to the most accurate techniques showed that the greatest soil nutrient elements were measured in the west and the north parts. This means that the soil fertility condition was better in the southern and western parts of the study area, and the amount of nutrients in the soil decreased towards the central and eastern areas. In addition to management factors such as fertilization and irrigation, this is due to the climate and more rainfall in these areas, as well as the higher quality of irrigation water in these areas. In general, according to the obtained results, it was found that geostatistical modeling can show continuous changes in soil parameters with acceptable accuracy. Therefore , these results could help to adopt methods for crop improvement including proper crop choice and site-specific fertilizer recommendations to optimize the management of inputs and sustainable production.

Aghaeipour, N., Zavareh, M., Pirdashti, H.,  Asadi, H. & Bahmanyar, M.A. (2017). Evaluation of spatial variability of some soil chemical and physical properties in Foumanat Plain paddies using geostatistical methods. Applied Research in Field Crops. 31(4), 50-71(in Persian).
Behnam, V., Gholamalizadeh Ahangar, A., Rahmanian, M. & Bameri A. (2019). Spatial distribution of some physical and chemical properties of soil using geostatistic methods (Case study: Zabol to Zahedan route). Journal of. Environental Water Enginiering, 5(3), 251–263. DOI: 10.22034/jewe.2019.200821.1330. (in Persian).
Bijanzadeh, E., Mokarram, M. & Naderi, R. (2014). Applying Spatial Geostatistical Analysis Models for Evaluating Variability of Soil Properties in Eastern Shiraz, Iran. Iran Agricultural Research, 33(2): 35-46.
Bogunovic, I., Paulo Pereira, P. & Brevik, C. (2017). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–58, 535-545.
Chahouki, M.A., Ernani, M., Zare Chahouki, A. & Khalasi Ahvazi, L. (2010). Application of spatial statistical methods in predictive models of plant species habitat. Journal of Arid Biom Scientific and Research, 1(1), 13-23.
Dalchiavon, F. C., Carvalho, M. P., Andreotti, M. & Montanari, R. (2012). Spatial variability of the fertility attributes of dystropheric red latosol under a no-tillage system. Journal of Revista Ciencia Agronomice. 43, 453-461.
Desavathu, R.P., Nadipena, A.R. & Peddada, J.R. (2017). Assessment of soil fertility status in Paderu Mandal, Visakhapatnam district of Andhra Pradesh through geospatial techniques. Egyptian Journal of Remote Sensing and Space Science, 21. doi:10.1016/j.ejrs.2017.01.006.
Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F. & Konopka, A.E. (1994). Field scale variability of soil properties in Central lowa soils. Soil Science Society of America Journal, 58, 1501-1511.
Foroughifar, H., Jafarzadah, A. A., Torabi Gelsefidi, H., Aliasgharzadah, N., Toomanian, N. & Davatgar, N. (2011). Spatial Variations of Surface Soil Physical and Chemical Properties on Different Landforms of Tabriz Plain. Soil and water science, 21 (3), 1-21. (In persion).
Gotway, C. A., Ferguson, R. B., Herget, G. W. & Peterson, T. A. (1996). Comparison of kriging and Inverse- Distance methods for mapping soil parameters. Soil Science Society of America Journal, 60, 1237-1247.
Hashemi, M.., Gholamalizadeh Ahangar, A., Bameri, A., Sarani, F. & Hejazizadeh, A. (2016). Survey and zoning of soil physical and chemical properties using Geostatistical methods in GIS (Case study: Miankangi region in Sistan. Water Soil, 30(2), 443-458.
Hu, K., Zhang, F., Li H., Huang, F. & Li, B. G. (2006). Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing. Pedosphere, 16, 690-698.
Isaaks, E.H. & Srivastava, R.M. (1989). An introduction to applied geostatistics. Oxford University Press. NewYork. P. 561.
Jaiver, D., Sanchez, T., Gustavo, A., Ligarreto, M. & Fabio, R. L. (2011). Spatial variability of soil chemical properties and its effect on crop yield. A case study in maize (zea mays L.) on the Bogota plateau. Journal of Agronomia colombiana. 29, 265- 274.
Jianbing, W., Boucher, A. & Zhang, T. (2008). A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM. Computers & Geosciences, 4(12), 1863-1876.
Karimi Nezhad, M. T., Tabatabaii, S. M. & Gholami, A. (2015). Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iranian Journak of Geochemical Exploration, 152, 91-109.
Kravchenko, A. & Bullock, D.G. 1999. A comparative study of interpolation methods for mapping soil properties. Agronomy Journal, 91, 393–400.
Linnik, V., Tatiana, G., Bauer, V., Tatiana, M., Saglara, S. &  Mazarji, M. (2022). Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ Geochem Health , 44, 319–333. https://doi.org/10.1007/s10653-020-00688-y
Liu, R., Xu, F., Yu, W., Shi, J., Zhang, P. & Shen, Z. (2016). Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics. Journal of Environmental Monitoring and Assessment. 188 (2):1–10.
Malakouti, M. j., Moshiri, F., Ghaibi, M.N. & Molavi, s. (2005). Optimum levels of some nutrients in soils and some agronomic and horticultural. Part2:Horticultural crops. Ministry of Jihad-e-Agriculture. Soil and Water Institute.406. 21p. (In Persian).
Mohammadi, J. (2006). Pedometrics (spatial statistics). Pelk Publication. Tehran, 453p (In Persian).
Mulder, V.L., Lacoste, M., Richer-de-Forxges, A.C. & Arrouays, D. (2016). Global Soil Map.France: high resolution spatial modelling the soils of France up to two meter depth Advances in Soil Science, 573 (1),1352–1369.
Najafian, A., Dayani, M., Motaghian, H. & Nadian, H. (2012). Geostatistical assessment of the spatial distribution of some chemical properties in calcareous soils. Journal of Integrative Agriculture, 11, 1729-1737.
Nourzadeh, M., Mahdian, M. H. & Malakouti, M. J. (2010). Investigation and prediction spatial variability in chemical of agricultural soil using geostatistics. Archives of Agronomy and Soil Science, 1-15.
Olsen, S. R. & Sommers, L.E. (1982). Phosphorus. PP. 403-430. In: A. L. Page (Ed.), Methods of Soil Analysis, Agron. No. 9, Part 2, Chemical and microbiological properties, 2nd ed., American Society of Agronomy, Soil Science Society of America, Madison, 403-430.
 Page, A.L., R. H. Miller and and M. Keeney. 1992. Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties. American Society of Agronomy. In Soil Science Society of America, Vol. 1159.
Patriche, C.V., Roşca, B., Pıˆrnău, R.G. & Vasiliniuc, I. (2023) Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning. PLoS ONE, 18(8).
https://doi.org/10.1371/journal.pone.0289286
Piri sahragard, H. & Zare Chahouki, M.A. (2015). An evaluation of predictive habitat models performance of plant species in Hoze soltan rangelands of Qom province. Ecological Modelling, 309,310: 64-71.
Portal of Jihad-e-Agriculture organization of Chadegan city. https://chadegan.agri-es.ir/Default.aspx?tabid=7687 (In Persian).
Qiu, W., Curtin, D. & Beare, M. (2011). Spatial variability of available nutrients and soil carbon under arable cropping in Canterbury. The New Zealand Institute for plant and food research limited. 7 pp.
Reza, S.K., Ray, S.K., Nayak, D.C & Singh, S.K. (2018). Geostatistical and multivariate analysis of heavy metal pollution of coal-mine affected agricultural soils of North-eastern India. Journal of the Indian Society of Soil Science, 66(1), 20–27. doi:10.5958/0974-0228.2018.00003.8.
Rezazadehshamkhal, S., Gholamalizadeh Ahangar, A., Gazmeh, S., Froghifar, H. and Bameri, A. 2016. Evaluation of Different Interpolation Methods in Spatial Estimation of Soil Properties in Sistan Plain. Water and soil science, 26 (2), 151-162.
Rizwan, M., Siddique, M. T., Ahmed, H., Iqbal, M. & Ziad T. (2016). Spatial variability of selected physico-chemical properties and macronutrients in the shale and sandstone derived soils. Soil Environment, 35(1), 12-21.
Sharma, B. D., Aggarwal, V. K., Mukhopadhayay, S. S.  & Arora, H. 2002. Micronutrient distribution and their association whit soil properties in Entisol of Punjab, India. Journal of Agricultural, 7, 315-322
Sharma, R. P.,  Chattaraj, S., Vasu, D., Karthikeyan, K., Tiwary, P.,  Naitam, R. K. & Nimkar, A. M.
(2021) Spatial variability assessment of soil fertility in black soils of central India using geostatistical modeling. Archives of Agronomy and Soil Science, 67, 7, 876-888.
Tagore, G.S., Bairagi, G.D., Sharma, R. & Verma, P.K. (2014). Spatial variability of soil nutrients using geospatial techniques: A case study in soils of Sanwer Tehsil of Indore district of Madhya Pradesh.  Remote Sensing and Spatial Information Sciences, 8,1353–1363. doi:10.5194/isprsarchives-XL-8-1353-2014.
Utset, A., Lopez, T. & Diaz, M. (2000). A comparison of soil maps, kriging and a combined method for spatially prediction bulk density and field capacity of Ferralsols in the Havana-Matanaz Plain. Geoderma, 96, 199-213.
Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Ramamurthy, V., Lalitha, M. & Kalaiselvi, B. (2017). Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Researches. 169, 25–34. doi:10.1016/j.still.2017.01.006.
Vieira, S.R. & Gonzalez, A. (2003). Analysis of the spatial variability of crop yield and soil properties in small agricultural plots. Bragantia, 62,127-138.
Wang, Y., Zhang, X. and Huang, C. (2009). Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150, 141-149
Weindorf, D. C. & Zhu, Y. (2010). Spatial Variability of Soil Properties at Capulin Volcano, New Mexico. USA. Journal of Soil Science Society of China, 20, 185–197.
Wollenhaupt, N. C., Wolkowski, R. P. & Clayton, M. K. (1994). Mapping soil test phosphorus and potassium for variable rate fertilizer application. Journal of Production Agriculture, 7, 441-448.
Wu, W., Xiu, D. T. & Liu, H. B. (2008). Spatial variability of soil heavy metals in the three gorges area, Multivariate and Geostatistical analysi. Journal of Environmental Mointoring Assessment, 157, 63-71.
Xing-Yi, Z., Yue-Yu', S., Xu Dong, Z., Kai, M. & Herbert, S.J. (2007). Spatial Variability of Nutrient Properties in Black Soil of Northeast China. Pedosphere, 17(1), 19-29. 2
Zhang, X., Lin, F., Jiang, Y., Wang, K. & Feng, X. L. (2008). Variability of total and available copper concentrations in relation to land use and soil properties in Yangtz river deltabof China. Journal of Environmental Monitoring and Assessment,
Zheng, J., He, M., Li, X., Chen, Y., Li, X. & Liu, L. (2008). Effect of Salsola passerine shrub patches on the micro scale heterogeneity of soil in a mountain grassland, China Journal of Arid Environment, 72, 150-161.
Zulfikar Khan, M.,  Rafikul Islam, M.,  Abdus Salam, B. & Ray, TY. (2021). Spatial Variability and Geostatistical Analysis of Soil Properties in the Diversified Cropping Regions of Bangladesh Using Geographic Information System Techniques. Applied and Environmental Soil Science, 1-19. https://doi.org/10.1155/2021/6639180.