ارزیابی کارایی مدل‌هایSVM ، LS-SVM و SVM-GOA در شبیه‌سازی دبی اوج سیل ایستگاه پل دختر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه علوم و مهندسی آب، دانشکده کشاورزی دانشگاه بوعلی سینا، همدان، ایران

چکیده

مدل‌سازی یا شبیه‌سازی سیل یکی از راهکارهای اساسی برای مدیریت و کاهش اثرات مخرب این پدیده بوده و شناسایی مدل‌هایی کارآمد بدین منظور، یکی از مهم‌ترین ارکان در مدیریت حوضه‌های آبریز است. در این پژوهش دقت مدل‌های ماشین بردار کلاسیک(SVM) ، ماشین بردار پشتیبان تلفیق شده با الگوریتم ملخ  (GOA-SVM)و حداقل مربعات ماشین‌بردار پشتیبان (LS-SVM) در شبیه‌سازی دبی اوج سیل ایستگاه پل‌دختر در حوضه کرخه، مورد ارزیابی قرار گرفته است. بدین منظور از آمار 74 واقعه سیل در محدوه سال‌های 1388 تا 1395 در ایستگاه پل دختر و بارش روزانه 13 ایستگاه باران‌سنجی در حوضه آبریز بالادست این ایستگاه استفاده شده است. از این تعداد، 52 واقعه برای آموزش و 22 واقعه نیز برای صحت‌سنجی مدل‌ها انتخاب شد. مقایسه نتایج به کمک چهار شاخص آماری ضریب تبیین(R^2)، جذر میانگین مربعات خطا (RMSE)، خطای استاندارد (SE)، ضریب نش (NS) و همچنین تحلیل عدم قطعیت به کمک دو شاخص متوسط طول بازه نسبی  (ARIL)و درصد پوشش (POC) صورت گرفت. نتایج حاکی از برتری نسبی مدل LS-SVM با 407/0SE=، 16/110RMSE=، 91/0NS= و 92/0R2= نسبت به مدل SVM با  5/0 SE=، 70/137RMSE=، 87/0NS= و 88/0R2= و مدل SVM-GOA با 519/0 SE=، 53/144RMSE=، 83/0NS= و 9/0R2= است. متوسط مدت زمان اجرای مدلLS-SVM   در حد چند ثانیه و این زمان در مدل SVM-GOA در حد چند ساعت است. از سوی دیگر تنظیم پارامترهای مدل SVM کلاسیک بصورت دستی نیز مستلزم صرف زمان زیادی است. لذا مدلLS-SVM  به دلیل دارا بودن پارامترهای قابل تنظیم کمتر نسبت به مدل‌های SVM وSVM-GOA ، از لحاظ اجرایی ازسهولت بیشتری برخوردار است. لذا می‌توان با قطعیت و اختلافی چشمگیر مدلLS-SVM  را نسبت به دو مدل دیگر در ارجحیت قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the efficiency of SVM, LS-SVM and SVM-GOA models in simulating the Flood peak discharge at the Poldokhtar station

نویسندگان [English]

  • Fatemeh Tavakoli 1
  • Hamed Nozari 2
  • safar marofi 1
1 Dept. of Water Engineering Science, Faculty of Agricultural, University of Bu Ali-Sina , Hamedan, Iran
2 Department of Water Sciences and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

In order to control and minimize the damaging impacts of floods, flood modeling or simulation is a fundamental solution. Identifying effective models for this purpose is crucial in watershed management. This study evaluates the accuracy of support vector machine models combined with the support vector machine (SVM), Grasshopper algorithm (SVM-GOA) and least square support vector machine (LS-SVM) in simulating the flood peak discharge of Poldokhtar station in the Karkheh basin. For this study, 74 flood events from 2009 to 2016 at the Poldokhtar station and data from 13 daily rainfall stations in the upstream area for the same period were utilized. Subsequently, 52 events were allocated for training, and 22 for validation. The comparison of results was conducted using three statistical indicators: Correlation coefficient (R2), Root mean square error (RMSE), Nash efficiency (Ns), and Standard error (SE). Additionally, uncertainty analysis was performed using two indexes: ARIL and POC. The results indicate the relative superiority of the LS-SVM model with SE=0.407, RMSE=110.16, NS= 0.91 and R2=0.92 compared to the SVM model with SE=0.5, RMSE=137.70, NS= 0.87 and R2=0.88 and SVM-GOA model with SE=0.519, RMSE=144.53, NS= 0.83  and R2=0.9. The study's overall conclusion is that the LS-SVM model is more accurate, faster, and easier to implement compared to the SVM and SVM-GOA models. As a result, it can be confidently preferred over the SVM and SVM-GOA models due to its significant advantages. The research emphasizes the critical importance of precise flood modeling and simulation in watershed management for mitigating the destructive impact of floods.

کلیدواژه‌ها [English]

  • flood modeling
  • support vector machine
  • Grasshopper algorithm
  • Karkheh basin
  • Poldokhtar station

Evaluating the efficiency of SVM, LS-SVM and SVM-GOA models in simulating the Flood peak discharge at the Poldokhtar station

EXTENDED ABSTRACT

Introduction

Floods are among the most devastating natural disasters, with profound impacts on ecosystems, human life, and causing environmental damage and economic losses to residential areas, agriculture, and water resources. (Choubin et al., 2019). Among natural disasters, floods cause the most damage in agriculture, fisheries, housing, and infrastructure sectors. Iran is also vulnerable to climate change due to its semi-arid climate and has experienced several devastating floods in the region over the past two decades. Various methods for flood forecasting exist worldwide, with machine learning techniques being particularly popular for their effectiveness in handling large datasets (Ranasinghe and Ilmini., 2020). In this context, based on the conducted research, it can be stated that among the models mentioned, the Support Vector Machine (SVM) model has been identified as a suitable method for modeling non-linear, complex, and dynamic processes like floods, demonstrating acceptable accuracy in flood forecasting. Therefore, considering the satisfactory accuracy of this method and the successful performance of meta-exploratory algorithms in enhancing its accuracy, two hybrid models, LS-SVM and SVM-GOA, were employed to simulate the peak discharge of the Poldokhtar station flood. The accuracy of these models, along with the classical Support Vector Machine (SVM), was assessed.

Methodology

In the research conducted to compare and evaluate the SVM, LS-SVM, and SVM-GOA models in flood modeling at the Poldokhtar hydrometry station, the following steps were undertaken. Initially, statistics and information regarding floods and precipitation in the upstream basin of the Poldokhtar hydrometric station were obtained daily from relevant organizations. Subsequently, a common statistical period was selected between the studied rain gauge and hydrometric stations (years 2009 to 2016). In the next phase, 74 flood events with instantaneous maximum discharge exceeding 60 cubic meters per second were identified within this timeframe, and the precipitation amount on the day of each flood event was determined at each upstream rain gauge station. Considering the impact of rainfall in the days leading up to a flood event on its occurrence, influenced by the time of concentration of the basin, a more detailed analysis included not only the rainfall on the day of the flood but also the rainfall from the five days prior to it. Finally, after selecting and determining the input and output values, the desired models were implemented.

Results and Discussion

In this research, which was conducted in order to compare and evaluate SVM, LS-SVM and SVM-GOA models in the flood modeling of Poldokhtar hydrometry station, the following results were obtained:

Necessarily, the use of rainfall time series with a 5-day scale and the use of statistics from all upstream stations will not increase the accuracy of modeling, and the use of additional series will reduce the accuracy by disrupting the training process. It can be inferred that increased complexity does not necessarily result in improved performance of hydrological models, and the performance may vary based on the hydrological variable or conditions considered

Overall, the results of calculating statistical indices demonstrate the relative superiority of the LS-SVM model compared to the SVM and SVM-GOA models.

The utilization of rainfall statistics from the four stations of Chameshk, Veysian, Khorramabad, and Aleshtar not only enhanced the performance of the LS-SVM model in flood modeling but also facilitated the identification of three key areas with the most significant impact on simulation accuracy.

In this study, the average execution time of the LS-SVM model was approximately a few seconds, whereas the SVM-GOA model took several hours to run. Additionally, manually setting parameters for the classic SVM model is a time-consuming process. Therefore, the LS-SVM model was easier to implement due to its fewer adjustable parameters compared to the SVM-GOA and SVM models.

Although the results show the relative equality of the SVM-GOA and SVM models, but the high execution time of the SVM-GOA model, especially in problems similar to this research, causes it to take months to achieve goals such as sensitivity analysis. From this point of view, the SVM model can be prioritized over the SVM-GOA model.

The output of the LS-SVM model for the same inputs is constant and not random. Meanwhile, the output of SVM-GOA model has a wider confidence band and it shows the randomness of its output in flood simulation.

Agnihotri, A., Sahoo, A., & Diwakar, M. K. (2022). Flood Prediction Using Hybrid ANFIS-ACO Model: A Case Study BT  - Inventive Computation and Information Technologies (S. Smys, V. E. Balas, & R. Palanisamy (eds.); pp. 169–180). Springer Nature Singapore.
Asadi, M., Haidary, Z., Emami, K. (2022). Assessing the Physical Development Trend of Poldokhtar City Towards Flood-Prone Areas, Journal of Geography and Environmental Hazards, 11(2), pp. 159-174. . (In Persian). doi: 10.22067/geoeh.2021.72169.1101
Azadi, F., Sadough, S. H., Ghahroudi, M., Shahabi, H. (2020). Zoning of Flood Risk in Kashkan River basin using Two Models WOE and EBF, Journal of Geography and Environmental Hazards, 9(1), pp. 45-60. (In Persian). doi: 10.22067/geo.v9i1.83090
Behzad, M., Asghari, K., & Coppola, E. A. (2010). Comparative Study of SVMs and ANNs in Aquifer Water Level Prediction. Journal of Computing in Civil Engineering, 24(5), 408–413. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000043
Bilondi, M. P., Siuki, A. K., & Tabas, S. S. (2015). Daily rainfall-runoff modeling with Least Square Support Vector Machine (LS-SVM). Water and Soil Conservation, 21(6), 293–304. (In Persian) https://www.magiran.com/paper/1401516 LK  - https://www.magiran.com/paper/1401516
Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of The Total Environment, 651, 2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064
Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press. https://doi.org/10.1017/CBO9780511801389
García-Callejas, D., & Araújo, M. (2016). The effects of model and data complexity on predictions from species distributions models. Ecological Modelling, 326, 4-12, https://doi.org/10.1016/j.ecolmodel.2015.06.002.
Golshan, M., Ouri, A. E., & Khosravi, K. (2018). Flood Susceptibility assessments Using Frequency Ratio model in Talar Watershed. Journal of Natural environment hazards, 7(15), 1–16. (In Persian) https://www.magiran.com/paper/1814600
Nasri M, Ghobadi M, Sepahvand A. (2021). Qualitative Prioritization of Rivers of Kashkan Basin in Lorestan Province for Aquaculture (Coldwater Fishes) Development Using Fuzzy AHP and VIKOR methods. JAD, 15 (3) :111-126. (In Persian)
karami,  H & Rezaei Ahvanooei, A. (2021). Estimating Discharge Coefficient of Curved Piano Key Overflows Using Combination of Support Vector Regression and Grasshopper and Firefly Algorithms. Irrigation and Water Engineering, 12(2), 186–202. (In Persian) https://doi.org/10.22125/iwe.2021.142103
karimi firoozjaei, M., abdolaho kakroodi, A & jolodar niyaraki, M. (2018). Preparing a flood risk map based on the flow energy by using geographical information system Case study: Nekaroud River. Quantitative Geomorphological Research, 5(4), 159–175. (In Persian). https://www.geomorphologyjournal.ir/article_78069.html
Ke, Z., Jiefan, N. I. U., Xi, L. I., & Lijun, C. (2021). Comparison of artificial intelligence flood forecasting models in Chinas semi-arid and semi-humid regions. Water Resources Protection, 37(1), 28–35. http://szybhen/article/abstract/bh20210105
Mousavi, M., Sareli, R., Khodadad, M. (2019). Detection of land use and vegetation changes in Poldokhtar Using Landsat Satellite Images. Haft Hesar J Environ Stud , 7 (26), 103-115. (In Persian)
Nozari, H., tavakoli, F. (2018). Stream Flow Prediction Using Support Vector Machine Based on Discharge and Precipitation Time series on Upstream Stations (Case Study: Taleh Zang Hydrometric Station), Journal of Modeling in Engineering, 16(54), 95-104. (In Persian) doi: 10.22075/jme.2017.11363.1112
Orth, R,. Staudinger, M., Seneviratne., S., Seibert, J., & Zappa, M. (2015) Does model performance improve with complexity? A case study with three hydrological models. Journal of Hydrology, 523, 147-159. https://doi.org/10.1016/j.jhydrol.2015.01.044.
Plan and budget organization of Khuzestan province. (2011). Studies of the provincial training program
        - supporting report, the seventh volume. (In Persian). https://www.mpo-kz.ir
Ranasinghe, R. M., & Ilmini, W. (2020). Introducing a LSTM based Flood Forecasting Model for the Nilwala river basin with a Mobile Application-a Review.
Sahoo, A., & Ghose, D. K. (2022). Flood Forecasting Using Hybrid SVM‑GOA Model: A Case Study, Intelligent Systems (S. K. Udgata, S. Sethi, & X.-Z. Gao (eds.); pp. 407–416). Springer Nature Singapore.
Sahoo, A., Samantaray, S., & Ghose, D. K. (2022). Multilayer perceptron and support vector machine trained with grey wolf optimiser for predicting floods in Barak river, India. Journal of Earth System Science, 131(2), 85. https://doi.org/10.1007/s12040-022-01815-2
Seifi, A. (2010). Developing of expert system to prediction of daily evapotranspiration by support vector machine and compare results to ANN, ANFIS and experimental method [Department of Water Engineering, Tarbiat Modarres University, Tehran, Iran]. (In Persian)
Shada, B., Chithra, N. R., & Thampi, S. G. (2022). Hourly Flood Forecasting Using Hybrid Wavelet-SVM. Journal of Soft Computing in Civil Engineering, 6(2), 1–20. https://doi.org/10.22115/scce.2022.317761.1383
Shrifi Garmdareh, E., Vafakhah, M., & Eslamian, S. (2019). Assessment the Performance of Support Vector Machine and Artificial Neural Network Systems for Regional Flood Frequency Analysis (A Case Study: Namak Lake Watershed). jwss, 23 (1), 351-366. (In Persian)
Singh, U. K., Kumar, B., Gantayet, N. K., Sahoo, A., Samantaray, S., & Mohanta, N. R. (2022). A Hybrid SVM–ABC Model for Monthly Stream Flow Forecasting BT  - Advances in Micro-Electronics, Embedded Systems and IoT (V. V. S. S. S. Chakravarthy, W. Flores-Fuentes, V. Bhateja, & B. N. Biswal (eds.); pp. 315–324). Springer Nature Singapore.
Tabbussum, R., & Qayoom, D. (2021). Performance evaluation of artificial intelligence paradigms—artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Environmental Science and Pollution Research, 28. https://doi.org/10.1007/s11356-021-12410-1