کاربرد الگوریتم چندهدفه بهینه سازی ازدحام ذرات در بهره برداری کمی-کیفی از منابع آب مطالعه موردی: سد و رودخانه دز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری عمران، گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی ، اراک ، ایران

2 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی ، اراک ، ایران

3 گروه مهندسی شیمی، واحد اراک، دانشگاه آزاد اسلامی ، اراک ، ایران

4 دانشیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه،ایران

چکیده

در تحقیق حاضر سیستم منابع آب سطحی رودخانه دز حد فاصل سد تنظیمی دز تا بندقیر برای توسعه یک مدل کمی- کیفی که قادر به استخراج سیاست‌های بهره‌برداری بهینه باشد انتخاب شد. برای شبیه‌سازی وضع موجود بهره‌برداری، تحت عنوان سناریوی مرجع، اتصال دینامیک بین مدل‌های کمی و کیفی ایجاد شد. طوری که در سیستم کوپل شده، روابط هیدرولیکی بین تمام اجزای سیستم برقرار گردید. در سناریوی بهینه‌سازی متغیرهای تصمیم شامل نیاز زیست محیطی ماهیانه رودخانه و اهداف شامل حداکثرسازی درصد تامین نیازها و حداقل سازی تخطی از استانداردهای کیفی بودند. اجرای سناریوی بهینه‌سازی موجب افزایش اطمینان‌پذیری تأمین تمامی نیازهای دشت با هر اولویتی که دارند، گردید. همچنین نتایج سناریوی بهینه‌سازی نسبت به سناریوی مرجع نشان داد که نه تنها غلظت پارامترهای آلودگی و کیفی بهبود یافته است، بلکه در بسیاری از نقاط رودخانه بخصوص در محل‌های برداشت آب کشاورزی، حداقل تجاوز از استانداردهای کیفی و آلودگی آب رودخانه وجود دارد. نتایج نشان داد با بهره‌گیری از روش اتصال دینامیک کمی-کیفی منابع آب و توسعه مدل کوپل‌شده با استفاده از الگوریتم MOPSO، می‌توان برنامه‌ریزی بهتری برای استفاده مناسب از منابع آب موجود با در نظر گرفتن تمامی ذینفعان انجام داد. طوری که علاوه بر تأمین نیازها، روند کیفیت و آلودگی رودخانه نیز در طول دوره بهره‌برداری نزدیک به حدود استاندارد باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of multi-objective particle swarm optimization algorithm in quantitative-qualitative exploitation of water resources (Case study: Dez Dam and River)

نویسندگان [English]

  • saeid farokhi 1
  • Mohsen Najarchi 2
  • hossein mazaheri 3
  • saeid shabanlou 4
1 Ph.D. Candidate, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran, Iran
2 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
3 Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
4 Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
چکیده [English]

The Dez-River's surface water resources system between the Dez regulatory dam and Bandar-e-Ghir is the focus of the current study to create a qualitative-quantitative-model that can be used to determine the best operating strategies. for replicate the existing operational state, a dynamic link between quantitative and qualitative models is built under the "reference-scenario" such that hydraulic linkages are generated between all of the system's components in the coupled system. The monthly environmental demands of the river are one of the choice factors in the optimization-scenario. The goals are to maximize the percentage of needs met and minimize quality standard violations. The implementation of the optimization scenario increased the reliability of providing all the needs of the plain with any priority. This problem illustrates how the reservoir should operate in an ideal state. In many places along the river, particularly the agricultural water withdrawal sites, the minimum violation of water quality standards has happened, according to a comparison of the pollution and quality parameters in the optimization scenario and the reference scenario. The amount of pollution and quality parameters has also improved. The findings show that it is possible to plan more effectively for the appropriate use of currently available water resources by taking into account all stakeholders and utilizing the qualitative-quantitative dynamic connection method of water resources to develop a coupled model using the MOPSO-algorithm. This will ensure that, in addition to meeting needs, the quality and pollution of the river remain close to the standard limits during the operation period.

کلیدواژه‌ها [English]

  • Multi-objective optimization
  • MOPSO
  • Quantitative-qualitative model
  • Dez River

Application of multi-objective particle swarm optimization algorithm in quantitative-qualitative exploitation of water resources (Case study: Dez Dam and River)

EXTENDED ABSTRACT

Introduction

As the most significant and essential sources of water supply for lakes and oceans, rivers also serve as the primary conduits for the movement and distribution of water in most situations for use in urban, agricultural, and industrial settings. The environmental status of the rivers is negatively and unfavorably affected by the cumulative consequences of urban, agricultural, and industrial growth. Rivers operating at their best on both a qualitative and quantitative level are thought to be ideal for managing water supplies. The Dez River's surface water resources system between the Dez regulatory dam and Bandar-e-Ghir is the focus of the current study in order to create a qualitative-quantitative model that can be used to determine the best operating strategies. In order to ensure the river's qualitative desirability at the level of international standards, the goal of this research is to develop a multi-objective particle swarm optimization algorithm that can be connected to the body of a quantitative-qualitative operation model to provide optimal solutions for the system's operation while meeting the needs of various uses, including drinking, industry, agriculture, and environmental.

Materials and Methods

In the research region, water resources are managed and planned using the WEAP model. Next, the pattern of pollution and quality in several Dez River sections is predicted using the QUAL2KW model. In order to replicate the existing operational state, a dynamic link between quantitative and qualitative models is built under the "reference scenario" such that hydraulic linkages are generated between all of the system's components in the coupled system. To replicate the quantitative and qualitative consequences of the surface water operation, this structure exchanges information and data between these two models. Then, a novel structure to extract the optimal rules for the operation of the dam and river system is built by connecting the body of the quantitative-qualitative coupled model with the multi-objective particle swarm optimization method. The monthly environmental demands of the river are one of the choice factors in the optimization scenario. The goals are to maximize the percentage of needs met and minimize quality standard violations.  

Results and discussion

The river is in a critical condition with regard to BOD pollution from the discharge of urban and industrial sewage, EC pollution from the discharge of agricultural land drains (primarily the Neyshekar project), and NH4 pollution from the discharge of urban and industrial sewage and drainage of agricultural lands, according to the recorded values of quality parameters and pollution in the quality monitoring stations and the results of the QUAL2K model implementation for the Dez River. Additionally, studies show that no particular plans have been made to regulate the amount of water withdrawal from the Dez River along its whole course in order to regulate the concentration of these and other crucial factors like temperature, PH, DO, and N-NO3. The optimization approach is used to compute the environmental discharge in various months of the year in the reference scenario, which is the optimal scenario pertaining to the inefficiency of the current water resource operation in the region. The findings demonstrate that, in the ideal situation, all of the plain's demands, regardless of priority, were met with a high degree of dependability. Additionally, the reservoir volume of the dam is higher than the minimal level of operation and has only dropped to the minimum level in five months of the whole operation history, with the exception of a drought spell (2020). This problem illustrates how the reservoir should operate in an ideal state. In many places along the river, particularly the agricultural water withdrawal sites, the minimum violation of water quality standards has happened, according to a comparison of the pollution and quality parameters in the optimization scenario and the reference scenario. The amount of pollution and quality parameters has also improved.

Conclusion

The findings show that it is possible to plan more effectively for the appropriate use of currently available water resources by taking into account all stakeholders and utilizing the qualitative-quantitative dynamic connection method of water resources to develop a coupled model using the MOPSO algorithm. This will ensure that, in addition to meeting needs, the quality and pollution of the river remain close to the standard limits during the operation period. The operators will be able to understand the repercussions of their acts, the invasion of the river's privacy, and the bad effects of their actions by employing this strategy. Water resource planners can use this model as a guide, particularly in locations with a range of contaminants and consumptions.

Azari, A., Hamzeh, S., & Naderi, S. (2018). Multi-objective optimization of the reservoir system operation by using the hedging policy.  Water Resour. Manage. 32 (6): 2061–2078. https://doi.org/10.1007/s11269-018-1917-5
Bayesteh, M and Azari, A. (2021). Stochastic Optimization of Reservoir Operation by Applying Hedging Rules. J. Water Resour. Plann. Manage., 147(2), 04020099
Chapra, S., Pelletier, G., & Tao, H. (2006). QUAL2K: A Modeling Framework for Simulating River and Stream Water Quality (Version 2.04) Documentation. Civil and Environmental Engineering Department, Tufts University, Medford, MA.
Chen, D., Chen, Q., Leon, A.S., & Li, R. (2016). A Genetic Algorithm Parallel Strategy for Optimizing the Operation of Reservoir with Multiple Eco-Environmental Objectives. Water Resources Management 30(7), 2127–2142.
Coello, C. A., Pulido G. T., & Lechuga M. S. (2004). Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation Journal, 8(3), 256 – 279.
Cox, B. 2003. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Science of the total environment, 314, 335-377.  
Da Silva, T. D., & Albuquerque Alves, C. D. M. (2016). WEAP and QUAL2K Model Integration for Water Quality Evaluations as a Result of Urban Expansion Scenarios in the Federal District of Brazil. Paper presented at the World Environmental and Water Resources Congress 2016.
Deksissa, T., Meirlaen, J., Ashton, P. J., & Vanrolleghem, P. A. 2004. Simplifying dynamic river water quality modelling: A case study of inorganic nitrogen dynamics in the Crocodile River (South Africa). Water, Air, and Soil Pollution, 155(1-4), 303-320.
Fallahi, M.M., Shabanlou, S., Rajabi, A. Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl Water Sci 13, 143.
Goorani, Z., & Shabanlou, S. (2021). Multi-objective optimization of quantitative-qualitative operation of water resources systems with approach of supplying environmental demands of Shadegan Wetland.  Journal of Environmental Management. 292, 112769. https://doi.org/10.1016/j.jenvman.2021.112769
Hassan, R., Cohanim, B., Weck, O.D. & Venter, G. (2005). A Comparison of Particle Swarm Optimization and the Genetic Algorithm. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 18-21 April 2005, Austin, Texas.
Hu, M., Huang, G.H., Sun, W., Ding, X., Li, Y.P., & Fan, B. (2016). Optimization and Evaluation of Environmental Operations for Three Gorges Reservoir. Water Resources Management, 30(10), 3553–76.
Jalili, A.A., Najarchi, M., Shabanlou, S., & Jafarinia R. (2023). Multi-objective Optimization of water resources in real time based on integration of NSGA-II and support vector machines. Environ Sci Pollut Res 30, 16464–16475.
Jalilian, A., Heydari, M., Azari, A., & Shabanlou, S. (2022). Extracting Optimal Rule Curve of Dam Reservoir Base on Stochastic Inflow. Water Resources Management, 36, 1763–1782. https://doi.org/10.1007/s11269-022-03087-3
Jia, F., & Lichti, D. (2017). A comparison of simulated annealing, genetic algorithm and particle swarm optimization in optimal first-order design of indoor TLS networks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V(IV-2/W4), 18–22 September, Wuhan, China.
Kachitvichyanukul, K. (2012). Comparison of Three Evolutionary Algorithms: GA, PSO, and DE. Industrial Engineering and Management Systems, 11(3), 215-223.
Kannel, P. R., Lee, S., Lee, Y.-S., Kanel, S., & Pelletier, G. (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. ecological modelling, 202(3), 503-517
Karamian, F., Mirakzadeh, A. A., & Azari, A. (2023). Application of multi-objective genetic algorithm for optimal combination of resources to achieve sustainable agriculture based on the water-energy-food nexus framework. Science of The Total Environment, 860, 160419. https://doi.org/10.1016/j.scitotenv.2022.160419
Mao, J., Zhang, P., Dai, L., Dai, H., & Hu, T., (2016). Optimal Opeartion of a Multi-Reservoir System for Environmental Water Demand of a River-Connected Lake. Hydrology Research 47, 206-224.
Mishra, B. K., Regmi, R. K., Masago, Y., Fukushi, K., Kumar, P., & Saraswat, C. (2017). Assessment of Bagmati River Pollution In Kathmandu Valley: Scenario-Based Modeling and Analysis for Sustainable Urban Development. Sustainability of Water Quality and Ecology
Moghadam, R.G., Shabanlou, S., & Yosefvand, F. (2020). Optimization of ANFIS Network Using Particle Swarm Optimization Modeling of Scour around Submerged Pipes. J. Marine. Sci. Appl. 19, 444–452. https://doi.org/10.1007/s11804-020-00166-y
Nourbakhsh, A., Safikhani, H., & Derakhshan, S. (2011). The comparison of multi-objective particle swarm optimization and NSGA-II algorithm: applications in centrifugal pumps. Engineering Optimization, 43 (10), 1095–1113.
Sulis, A., & Sechi, G. M. (2013). Comparison of generic simulation models for water resource systems. Environmental modelling & software, 40, 214-225.
Yarmohammadi, E., Izadbakhsh, M.A., Rajabi, A., Yosefvand, F. & Shabanlou, S. (2022). Optimal operation of water resources systems using MOICA algorithm with reservoir hedging approach in low-water regions. Irrigation and Drainage, 71(2), 406–417. https://doi.org/10.1002/ird.2660
Yates, D., Sieber, J., Purkey, D., & Huber-Lee, A. (2005). WEAP21—A demand-, priority-, and preference-driven water planning model: part 1: model characteristics. Water International, 30(4), 487-500.
Zarei, N., Azari, A., & Heidari, M. M. (2022). Improvement of the performance of NSGA-II and MOPSO algorithms in multi-objective optimization of urban water distribution networks based on modification of decision space. Applied Water Science, 12 (133), 1-12.
Zeinali, M., Azari, A., & Heidari, M. M. (2020). Multiobjective Optimization for Water Resource Management in Low-Flow Areas Based on a Coupled Surface Water–Groundwater Model. American Society of Civil Engineers.  J. Water Resour. Plann. Manage., 146(5), 04020020