تشخیص کمبود آهن در هلو با استفاده از پردازش تصویر و مدل شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه پژوهشی شیمی تجزیه، جهاد دانشگاهی آذربایجان غربی، ارومیه، ایران

چکیده

پایش سریع و دقیق شرایط تغذیه‌ای باغ‌های میوه برای توصیه بهینه کودی یک بخش حیاتی در بهبود عملکرد و افزایش کیفیت محصولات کشاورزی است. روش‌های آزمایشگاهی فعلی مورد استفاده برای وضعیت تغذیه درختان میوه گران، دشوار، زمان‌بر و نیازمند فرد متخصص هستند. این تحقیق به منظور تعیین میزان کمبود آهن در درختان هلو، روش پردازش تصویر و مدل شبکه عصبی استفاده شد. یک پایگاه داده شامل 800 تصویر از نمونه‌های برگ هلو در ابتدا تهیه و تصاویر با استفاده از روش خوشه‌بندی KNN در چهار کلاس بدون کمبود، کمبود کم، کمبود متوسط و کمبود شدید طبقه‌بندی شدند. عملیات پیش‌پردازش، استخراج ویژگی‌ها و مدل‌سازی با استفاده از شبکه عصبی در نرم‌افزار متلب نسخه 2017 انجام گرفت. ویژگی‌های میانگین و انحراف معیار از مولفه‌های فضاهای رنگی RGB، HSV و Lab هر تصویر استخراج شدند و سپس الگوریتم آنالیز مولفه اصلی (PCA) بر روی بردار ویژگی اعمال شد. برای تعیین ساختار بهینه شبکه معیارهای دقت، صحت، بازیابی و معیار F برای تعیین تعداد ورودی‌های بهینه و تعداد نورون‌های متناظر با هر ترکیب ویژگی‌های ورودی (PCها) استفاده شد. نتایج نشان داد که مدل شبکه عصبی با ساختار 4 – 36 – 6 قادر است با دقت (54/0 ± 73/89 %)، صحت (57/0 ± 59/89 %)، بازیابی (51/0 ± 52/89 %) و معیار F (54/0 ± 55/89 %) میزان سطح کمبود آهن در برگ درخت هلو را تشخیص دهد. نتایج بدست آمده از ماتریس اغتشاش و مدل توسعه داده شده نشان داد که این روش قادر است با کارایی بالا شدت کمبود آهن در برگ‌ درختان هلو را تشخیص دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Detection of iron deficiency in peaches using image processing and artificial neural network model

نویسندگان [English]

  • Nasim Hajizadeh 1
  • Ebrahim Sepehr 1
  • Ramin Maleki 2
  • Aydin Imani 1
1 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Analytical Chemistry, Academic Center for Education, Culture and Research of West Azerbaijan, Urmia, Iran.
چکیده [English]

Accurately and promptly monitoring the nutritional conditions of fruit orchards is crucial for providing optimal fertilizer recommendations, which in turn improves yield and enhances the quality of agricultural products. The current laboratory methods used to evaluate nutritional condition in fruit trees are expensive, challenging, time-consuming, and require an expert. In this study, image processing methods and neural network models was utilized to determine the stages of iron deficiency in peach trees. Therefore, a database containing 800 images of peach leaf samples was acquired. These images were then classified into four categories using the KNN clustering method: no deficiency, low deficiency, moderate deficiency, and severe deficiency. The preprocessing, feature extraction, and modeling operations were performed in the MATLAB software, version 2017. Features such as mean and standard deviation were extracted from the RGB, HSV, and Lab color space components of each image. Subsequently, the principal component analysis (PCA) algorithm was applied to the feature vector. To determine the optimal structure of the network, criteria including precision, accuracy, recall, and the F1-score were evaluated. These criteria helped ascertain the number of optimal inputs and the corresponding number of neurons for each combination of input features (PCs). Results indicated that the neural network model, structured as 6-36-4, achieved an accuracy of 89.73 ± 0.54%, precision of 89.59 ± 0.57%, recall of 89.52 ± 0.51%, and an F1-score of 89.55 ± 0.54% in detecting levels of iron deficiency in peach tree leaves. The findings from the confusion matrix and the developed model reveal that this method can effectively and efficiently detect the severity of iron deficiency in peach tree leaves.

کلیدواژه‌ها [English]

  • Peaches
  • Iron deficiency
  • Image processing
  • Neural network
  • KNN clustering

Detection of iron deficiency in peaches using image processing and artificial neural network model

 

EXTENDED ABSTRACT

Introduction

Among micronutrients, iron deficiency is regarded as a significant nutritional disorder in orchards established on calcareous soils. Employing destructive and laboratory methods to diagnose the level of iron deficiency is typically time-consuming and costly. In recent years, the use of image processing methods and artificial intelligence models as non-destructive, inexpensive, fast, and accurate approaches have increasingly garnered the attention of researchers. In this study, a method based on artificial neural networks is presented for the automatic classification of peach tree leaves based on the level of iron deficiency.

Methods

800 leaf samples were collected from around Urmia County between June and July 2021 for imaging and iron measurements at the Agriculture Faculty of Urmia University. Utilizing the KNN method, images were classified based on active iron (Fe2+) into four deficiency categories: None-, Low-, Moderate-, and Severe- deficiency. Initially, images were transferred from RGB to HSV and Lab* spaces, with statistical features (mean and standard deviation) extracted for analysis. Principal component analysis was applied, and a neural model, including a hidden layer with a sigmoid tangent activation function and an output layer with a linear activation function, was developed. Utilizing 70% of the data for training and 30% for testing and validation, MATLAB 2018 was employed for image processing, feature extraction, and model development, while model efficacy was evaluated using Accuracy, Precision, Recall, and F1-score metrics.

Results

The results, based on 100 iterations, showed that the model utilizing the first 6 Principal Components (PCs) achieved the highest accuracy (89.73% ± 0.54%), precision (89.59% ± 0.57%), recall (89.52% ± 0.51%), and F-measure (89.55% ± 0.54%) among all scenarios. Models with 5 and 6 PCs exhibited enhanced stability considering the accuracy and standard deviation. Consequently, model number 6, with 6 main components, outperformed others in terms of efficiency. Pertaining to the confusion matrix results for the optimal model with test data the "moderate" class was the most challenging to classify, often being misclassified into adjacent deficiency categories i.e., low- and severe- deficiency. Furthermore, the Receiver Operating Characteristic (ROC) results of the optimal model highlighted its proficiency in identifying all categories, obtaining the best performance for classes None, Severe, low, and moderate, in order.

Conclusion

A good correlation was observed between leaf color changes in peach leaf color and the level of active iron, demonstrating that iron deficiency could be detected using digital images and processing the extracted features. Therefore, the findings suggest that the presented model possesses high repeatability and can effectively categorize iron deficiency into four levels: none, low, moderate, and severe. This study, by modeling the color changes of peach leaves and active iron in the peach leaf, lays the foundation for presenting an efficient, cost-effective, and accurate method to replace conventional laboratory methods for detecting iron deficiency levels.

Balasubramaniam, P., & Ananthi, V. P. (2016). Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm. Nonlinear Dynamics83, 849-866. doi: https://doi.org/10.1007/s11071-015-2372-y
Barbedo, J.G.A., 2019. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Computers and Electronics in Agriculture162, pp.482-492. doi: https://doi.org/10.1016/j.compag.2019.04.035
Bavaresco, L., & Poni, S. (2003). Effect of calcareous soil on photosynthesis rate, mineral nutrition, and Source‐Sink ratio of table grape. Journal of plant nutrition26(10-11), 2123-2135. doi: https://doi.org/10.1081/PLN-120024269
Borhan, M.S., Panigrahi, S., Satter, M.A. and Gu, H., 2017. Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information processing in agriculture4(4), pp.275-282. doi: https://doi.org/10.1016/j.inpa.2017.07.005
Condori, R. H. M., Romualdo, L. M., Bruno, O. M., & de Cerqueira Luz, P. H. (2017, October). Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops. In 2017 Workshop of Computer Vision (WVC) (pp. 7-12). IEEE. doi: https://doi.org/10.1109/WVC.2017.00009
Culman, M. A., Gomez, J. A., Talavera, J., Quiroz, L. A., Tobon, L. E., Aranda, J. M., ... & Bayona, C. J. (2017, April). A novel application for identification of nutrient deficiencies in oil palm using the internet of things. In 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud) (pp. 169-172). IEEE. doi: https://doi.org/10.1109/MobileCloud.2017.32
Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences115(18), 4613-4618. doi: https://doi.org/10.1073/pnas.1716999115
Han, K. A. M., & Watchareeruetai, U. (2019, July). Classification of nutrient deficiency in black gram using deep convolutional neural networks. In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 277-282). IEEE. doi: https://doi.org/10.1109/JCSSE.2019.8864224
Hu, J., Li, D., Chen, G., Duan, Q., & Han, Y. (2012). Image segmentation method for crop nutrient deficiency based on fuzzy C-Means clustering algorithm. Intelligent Automation & Soft Computing18(8), 1145-1155. doi: https://doi.org/10.1080/10798587.2008.10643318
Imani, A., Hosseinpour, S., Keyhani, A., & Azimzadeh, M. (2020). Modeling and Optimization of Oligonucleotide-Based Nanobiosensor Using Artificial Neural Network and Genetic Algorithm Based Procedure. Iranian Journal of Biosystems Engineering, 51(1), 171-181. (In Persian with English Abstract). https://dx.doi.org/10.22059/ijbse.2019.290631.665231
Jafarbiglu, H., & Pourreza, A. (2023). Impact of sun-view geometry on canopy spectral reflectance variability. ISPRS Journal of Photogrammetry and Remote Sensing196, 270-286. doi: https://doi.org/10.1016/j.isprsjprs.2022.12.002
Katyal, J. C., & Sharma, B. D. (1980). A new technique of plant analysis to resolve iron chlorosis. Plant and Soil55, 105-119. doi: https://doi.org/10.1007/BF02149714
Leemans, V., Marlier, G., Destain, M. F., Dumont, B., & Mercatoris, B. (2017, April). Estimation of leaf nitrogen concentration on winter wheat by multispectral imaging. In Hyperspectral Imaging Sensors: Innovative Applications and Sensor Standards 2017 (Vol. 10213, pp. 45-54). SPIE. doi: https://doi.org/10.1117/12.2268398
Liu, B., Zhang, Y., He, D., & Li, Y. (2017). Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry10(1), 11. doi: https://doi.org/10.3390/sym10010011 
Luz, P. H. D. C., Marin, M. A., Devechio, F. F. S., Romualdo, L. M., Zuñiga, A. M. G., Oliveira, M. W. S., ... & Bruno, O. M. (2018). Boron deficiency precisely identified on growth stage v4 of maize crop using texture image analysis. Communications in Soil Science and Plant Analysis49(2), 159-169. doi: https://doi.org/10.1080/00103624.2017.1421644
Morales, F., Grasa, R., Abadía, A., & Abadía, J. (1998). Iron chlorosis paradox in fruit trees. Journal of plant nutrition21(4), 815-825. doi: https://doi.org/10.1080/01904169809365444
Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of plant nutrition23(11-12), 1629-1643. doi: https://doi.org/10.1080/01904160009382129
Romualdo, L. M., Luz, P. H. D. C., Baesso, M. M., Devechio, F. D. F. D. S., & Bet, J. A. (2018). Spectral indexes for identification of nitrogen deficiency in maize. Revista Ciência Agronômica49, 183-191. doi: https://doi.org/10.5935/1806-6690.20180021
Samar, S. M., Shahabian, M., Fallahi, E., Davoodi, M. H., Bagheri, Y. R., & Noorgholipoor, F. (2007). Iron deficiency of apple tree as affected by increasing soil available phosphorous. Journal of plant nutrition30(1), 1-7. doi: https://doi.org/10.1080/01904160601054742
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience2016. doi: https://doi.org/10.1155/2016/3289801
Smith, B. R., & Cheng, L. (2006). Fe-EDDHA alleviates chlorosis inConcord'grapevines grown at high pH. HortScience41(6), 1498-1501. doi: https://doi.org/10.21273/HORTSCI.41.6.1498
Sun, Y., Gao, J., Wang, K., Shen, Z., & Chen, L. (2018). Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus, and potassium deficiencies. Journal of Spectroscopy2018. doi: https://doi.org/10.1155/2018/1469314
Sulistyo, S. B., Wu, D., Woo, W. L., Dlay, S. S., & Gao, B. (2017). Computational deep intelligence vision sensing for nutrient content estimation in agricultural automation. IEEE Transactions on Automation Science and Engineering15(3), 1243-1257. doi: https://doi.org/10.1109/TASE.2017.2770170
Sun, Y., Tong, C., He, S., Wang, K., & Chen, L. (2018). Identification of nitrogen, phosphorus, and potassium deficiencies based on temporal dynamics of leaf morphology and color. Sustainability10(3), 762. doi: https://doi.org/10.3390/su10030762
Tagliavini, M., & Rombola, A. D. (2001). Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy15(2), 71-92. doi: https://doi.org/10.1016/S1161-0301(01)00125-3
Tewari, V. K., Arudra, A. K., Kumar, S. P., Pandey, V., & Chandel, N. S. (2013). Estimation of plant nitrogen content using digital image processing.
Vakilian, K. A., & Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and electronics in agriculture139, 153-163. doi: https://doi.org/10.1016/j.compag.2017.05.012
Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience2017. doi: https://doi.org/10.1155/2017/2917536
Zohlen, A. (2000). Use of 1, 10‐phenanthroline in estimating metabolically active iron in plants. Communications in soil science and plant analysis31(3-4), 481-500.  doi: https://doi.org/10.1080/00103620009370451
Zhou, C., Le, J., Hua, D., He, T., & Mao, J. (2019). Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments. Measurement136, 478-486. doi: https://doi.org/10.1016/j.measurement.2018.12.088