استفاده از طرح حافظ گروه تک‌مرحله‌ای در انواع مدلسازی انتقال آلودگی در رودخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی و مدیریت آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

افزایش نگرانی‌های زیست‌محیطی در سال‌های اخیر، توسعه مدل‌های رایانه‌ای را که پراکندگی آلاینده‌ها در سیستم‌های آب طبیعی را پیش‌بینی می‌کنند، به یک ضرورت مطلق تبدیل کرده است. جذابیت اصلی این‌گونه مدل‌ها برخلاف مدل‌های فیزیکی، کم‌هزینه بودن و سهولت سازگاری با شرایط جدید است. به‌منظور حل معادله انتقال آلودگی در رودخانه به‌صورت مستقیم و معکوس از طرح حافظ گروه بهره گرفته شده است. ازآنجاکه شبیه‌سازی هر چه‌ سریع‌تر تابع شدت آلاینده بسیار حائز اهمیت است، پیدا کردن روشی که بتواند این مهم را محقق کند از اهمیت زیادی برخوردار است. حل معادله انتقال آلودگی با یک گام زمانی با استفاده از طرح حافظ گروه باعث کاهش زمان محاسبات و صرفه‌جویی در زمان و هزینه می‌شود. طرح حافظ گروه به‌عنوان روشی جهت حل مسائل بسیار پیچیده است. در این پژوهش از این روش برای حل معادله یک‌بعدی جابه‌جایی-پراکندگی با ضرایب متغیر، بهره‌ گرفته شده است. اساس این روش، حل سیستم‌های دینامیکی در گام‌های زمان مثبت و منفی و به‌دست آوردن یک معادله کلی جهت حل معادلات دیفرانسیل معمولی به‌صورت تک‌مرحله‌ای است. در این پژوهش سه مثال جهت نشان دادن عملکرد حل تک‌مرحله‌ای طرح مستقیم و معکوس حافظ گروه ارائه‌ شده است. ابتدا با استفاده از حل مستقیم مقدار غلظت آلاینده در رودخانه با ضرایب متغیر محاسبه ‌شده است. در گام بعد با دو مثال مختلف با استفاده از طرح معکوس حافظ گروه به شبیه‌سازی تابع شدت آلاینده در زمان ابتدایی پرداخته می‌شود و پس از شبیه‌سازی، دقت حل تک‌مرحله‌ای و چند‌مرحله‌ای با استفاده از شاخص‌های آماری مورد ارزیابی قرار می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using one-step group preserving schemes for contaminant transport modeling in rivers

نویسندگان [English]

  • Amir Mohammad Saadat
  • Mehdi Mazaheri
Department of Water Engineering and Management, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

The recent escalation of environmental concerns necessitates the development of computer models able to predict pollutant dispersal in natural aquatic systems, rendering them an absolute essentiality. Unlike physical models, the primacy of such computer models lies in their lower costs and facile adaptability to novel conditions. In order to resolve the pollution transport equation in rivers, both directly and inversely, the Group Preserving Scheme has been employed. As expeditious simulation of the pollutant intensity function is imperative, determining a technique to achieve this with celerity is essential. Solving the pollution transport equation in one time step utilizing GPS reduces computational duration and conserves time and resources. GPS constitutes a method for solving malignant problems. This method has been leveraged to solve the one-dimensional advection-dispersion equation with variable coefficients. This method is based on solving dynamic systems in positive and negative time intervals and deriving a general equation to solve ordinary differential equations in a one-step approach. In this study, three examples are shown to demonstrate the performance of the one-step solution of the direct and inverse Group Preserving Scheme. First, the pollutant concentration in the river was calculated using the forward solution with variable coefficients. Next, two different examples were used to simulate the pollutant intensity function at the initial time, employing the Backward Group Preserving Scheme. Afterward, the accuracy of the one-step and multi-step solutions was evaluated using statistical indicators.

کلیدواژه‌ها [English]

  • Advection-dispersion-equation
  • Identification of contaminant sources
  • Inverse method
  • Numerical method
  • One-step Group Preserving Scheme

Using one-step group preserving schemes for contaminant transport modeling in rivers

EXTENDED ABSTRACT

Introduction:

Recent years have witnessed growing environmental worries, rendering the creation of computer models that foresee pollutant dispersal in natural aquatic systems an absolute prerequisite. As expeditious simulation of the pollutant intensity function is of the essence, determining a technique to accomplish this with alacrity is imperative.

Material and method:

The current study implements the Group Preserving Scheme (GPS), predicated on Lie groups, to resolve the pollution transport equation in rivers, both directly and inversely. Initially, GPS is elucidated for the one-step direct solution of the pollution transport equation. Subsequently, the explication of the one-step Backward Group Preserving Scheme for the one-step inverse solution of this equation is examined. Finally, the advection-dispersion equation is resolved directly and inversely utilizing this methodology in a one-step and multi-step manner, with the accuracy of these two solutions evaluated against the exact solution. In this research, as an initial phase, the direct numerical approach is employed to solve the pollution transport equation unidimensionally. The resultant outcomes are then utilized as inputs for the second phase of computations (inverse solution of the pollution transport equation) to derive the final results (pollutant intensity function). To model the transport and release of pollutants in the river using GPS, the river is divided into n intervals.

Result and Discussion:

Three test cases have been designed to evaluate the one-step solution of the pollution transport equation directly and inversely in the temporal dimension utilizing the GPS. These three modal tests are presented in sequence to demonstrate the performance of the one-step method and its comparison to the multi-step approach. Since the pollution transport equation is solved with variable coefficients herein, the flow parameters must be computed first, obtained by solving the flow equations and employing extant models. The river characteristics have been considered per the actual conditions test, and the flow parameters have been calculated using the Saint Venant equation. For superior evaluation of the one-step method, statistical error indices, including Correlation Coefficient (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) have been utilized. In the first test case, where the simulation was performed directly, the one-step method encountered minor issues in simulating the concentration range, and the construction of the peak was also accompanied by an error, with the peak simulated by the one-step model created higher than the actual value. In the second test case involving reverse simulation, the one-step method performed relatively well compared to the multi-step method in reconstructing the concentration range and pollution peak, with minimal problems compared to the multi-step method, rendering this error negligible and the outcome expected given the one-step simulation. In the third test case intended for reverse simulation of the complex pattern, the one-step method performed remarkably well in reconstructing the peaks and correctly identified even the highest peak. The time delay in reaching peak concentration is evident in the one-step method compared to the multi-step method, engendering decreased accuracy of this method relative to the multi-step method in peak reconstruction. The accuracy of reconstructing the returned pattern by the inverse model versus the exact solution ranged from 86% to 99.8%, representing the maximum error of the one-step method during peak formation. The time delay in attaining peak concentration in the one-step method is more conspicuous in the mode 3 test than in the mode 2 test, with the complexity of the final condition as input to the inverse model not impervious to this time delay.

Conclusion:

The location of the peak is accurately identified by this method, and considering the time savings, the outcome of this method is acceptable. The delay in attaining peak concentration was observed in the reverse simulation, being more conspicuous in the more complex model. However, despite expedited and economical completion under certain conditions, a decrease in model accuracy can be overlooked, and numerical solutions utilized from this method as an efficacious and efficient approach delineated.

(Kumar), M. G., & Mohamed, S. (2005). Hybrid Genetic Algorithm—Local Search Methods for Solving Groundwater Source Identification Inverse Problems. Journal of Water Resources Planning and Management, 131(1), 45–57.
Ali, I. (2021). Bernstein collocation method for neutral type functional differential equation. Mathematical Biosciences and Engineering : MBE, 18(3), 2764–2774.
Alulema-Pullupaxi, P., Espinoza-Montero, P. J., Sigcha-Pallo, C., Vargas, R., Fernández, L., Peralta-Hernández, J. M., & Paz, J. L. (2021). Fundamentals and applications of photoelectrocatalysis as an efficient process to  remove pollutants from water: A review. Chemosphere, 281, 130821.
Ames, K. A., & Epperson, J. F. (1997). A Kernel-Based Method for the Approximate Solution of Backward Parabolic Problems. SIAM Journal on Numerical Analysis, 34(4), 1357–1390.
Atmadja, J., & Bagtzoglou, A. C. (2001). State of the art report on mathematical methods for groundwater pollution source identification. Environmental Forensics, 2(3), 205–214.
Burman, E., & Fernández, M. A. (2009). Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Computer Methods in Applied Mechanics and Engineering, 198(5–8), 766–784.
Chang, C.-W. (2010). A Backward Group Preserving Scheme for Multi-Dimensional Backward Heat Conduction Problems. CMES - Computer Modeling in Engineering and Sciences, 59, 239–274.
Chang, C.-Y., Dong, M.-G., Deng, Y.-R., Xiao, R.-B., & Liu, L.-L. (2019). [Thoughts on and Construction of a Risk Management and Control System for  Contaminated Sites in the Guangdong-Hong Kong-Macao Greater Bay Area]. Huan jing ke xue= Huanjing kexue, 40(12), 5570–5580.
Chang, C., Liu, C., & Chang, J. (2009). A new shooting method for quasi‐boundary regularization of multi‐dimensional backward heat conduction problems. Journal of the Chinese Institute of Engineers, 32(3), 307–318.
Chang, C. W., & Kuo, C. C. (2014). A Lie-group approach for solving backward two-dimensional nonlinear Klein-Gordon equation. Procedia Engineering, 79(1st ICM), 590–598.
Chang, C. W., & Liu, C. S. (2014). The backward group preserving scheme for multi-dimensional nonhomogeneous and nonlinear backward wave problems. Applied Mathematical Modelling, 38(15–16), 4027–4048.
Chapra, S. C. (2008). Surface Water-quality Modeling. Waveland Press.
Chartres, B., & Stepleman, R. (1972). A general theory of convergence for numerical methods. SIAM Journal on Numerical Analysis, 9(3), 476–492.
Chen, Y. (2016). International Journal of Heat and Mass Transfer High order implicit and explicit Lie-group schemes for solving backward heat conduction problems. International Journal of Heat and Mass Transfer, 101, 1016–1029.
Cheng, W. P., & Jia, Y. (2010). Identification of contaminant point source in surface waters based on backward location probability density function method. Advances in Water Resources, 33(4), 397–410.
Conrad, P. R., Girolami, M., Särkkä, S., Stuart, A., & Zygalakis, K. (2017). Statistical analysis of differential equations: introducing probability measures  on numerical solutions. Statistics and Computing, 27(4), 1065–1082.
Crooks, J., & Isakov, V. (2013). A wavelet-based approach to blending observations with deterministic computer  models to resolve the intraurban air pollution field. Journal of the Air & Waste Management Association (1995), 63(12), 1369–1385.
Cupola, F., Tanda, M. G., & Zanini, A. (2015). Laboratory sandbox validation of pollutant source location methods. Stochastic Environmental Research and Risk Assessment, 29(1), 169–182.
El Badia, A., Ha-Duong, T., & Hamdi, A. (2005). Identification of a point source in a linear advection-dispersion-reaction equation: Application to a pollution source problem. Inverse Problems.
Faraji, M., & Mazaheri, M. (2022). Mathematical model of solute transport in rivers with storage zones using nonlinear dispersion flux approach. Hydrological Sciences Journal, 67(11), 1656–1668.
Fardadi Shilsar, M. J., Mazaheri, M., & Mohammad Vali Samani, J. (2022). Analytical solution of the pollution transport equation with variable coefficients in river using the Laplace Transform. Water and Irrigation Management, 11(4), 683–698 (inPersian).
Fardadi Shilsar, M. J., Mazaheri, M., & Mohammad Vali Samani, J. (2023). A semi-analytical solution for one-dimensional pollutant transport equation in different types of river networks. Journal of Hydrology, 619(February), 129287.
Fardadi Shilsar, M. J., Mazaheri, M., & Mohammad Vali Samani mal, J. (2022). Analytical solution of pollutant transport equation in different types of river networks considering distributed source term. Iranian Journal of Soil and Water Research, 53(5), 1057–1077 (inPersian).
Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. Academic press.
Fürst, J. J., Rybak, O., Goelzer, H., De Smedt, B., De Groen, P., & Huybrechts, P. (2011). Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development, 4(4), 1133–1149.
Gao, W., Partohaghighi, M., Baskonus, H. M., & Ghavi, S. (2019). Regarding the group preserving scheme and method of line to the numerical simulations of Klein–Gordon model. Results in Physics, 15, 102555.
Ghane, A., Mazaheri, M., & Mohammad Vali Samani, J. (2016). Location and release time identification of pollution point source in river networks based on the Backward Probability Method. Journal of Environmental Management, 180, 164–171.
Glenis, V., McGough, A. S., Kutija, V., Kilsby, C., & Woodman, S. (2013). Flood modelling for cities using Cloud computing. Journal of Cloud Computing: Advances, Systems and Applications, 2(1), 7.
Gnudi, G. (2023). Analytical solution to Windkessel models using piecewise linear aortic flow  waveform. Physiological Measurement, 44(6).
Godwin, B. L., Albeke, S. E., Bergman, H. L., Walters, A., & Ben-David, M. (2015). Density of river otters (Lontra canadensis) in relation to energy development in  the Green River Basin, Wyoming. The Science of the Total Environment, 532, 780–790.
Guo, G., & Cheng, G. (2019). Mathematical modelling and application for simulation of water pollution accidents. Process Safety and Environmental Protection, 127, 189–196.
Harvey, R., & Verseghy, D. L. (2016). The reliability of single precision computations in the simulation of deep soil heat diffusion in a land surface model. Climate Dynamics, 46, 3865–3882.
Ibiş, B., & Bayram, M. (2014). Approximate solution of time-fractional advection-dispersion equation via  fractional variational iteration method. TheScientificWorldJournal, 2014, 769713.
Jiang, D., Zhu, H., Wang, P., Liu, J., Zhang, F., & Chen, Y. (2021). Inverse identification of pollution source release information for surface river  chemical spills using a hybrid optimization model. Journal of Environmental Management, 294, 113022.
Johnson, T. C., Baines, M. J., & Sweby, P. K. (2002). A box scheme for transcritical flow. International Journal for Numerical Methods in Engineering, 55(8), 895–912.
Karami Cheme, E., & Mazaheri, M. (2021). The effect of neglecting spatial variations of the parameters in pollutant transport modeling in rivers. Environmental Fluid Mechanics, 21(3), 587–603.
Kato, S., Zhang, C., & Kano, M. (2023). Simple algorithm for judging equivalence of differential-algebraic equation  systems. Scientific Reports, 13(1), 11534.
Khodambashi Emami, S., & Mazaheri, M. (2023). Sensitivity Analysis of Transient Storage Parameters in Mathematical Modeling of Pollution Transport in Rivers Containing Storage Zone. Irrigation Sciences and Engineering, 45(4), 101–116 )inPersian(.
Lee, Y. J., Park, C., & Lee, M. L. (2018). Identification of a contaminant source location in a river system using random forest models. Water, 10(4), 391.
Liu, C.-S. (2006). A Group Preserving Scheme for Burgers Equation with Very Large Reynolds Number. Computer Modeling in Engineering & Sciences, 12(3), 197–212.
Liu, C.-S., & Chang, C.-W. (2012). A novel mixed group preserving scheme for the inverse Cauchy problem of elliptic equations in annular domains. Engineering Analysis with Boundary Elements, 36(2), 211–219.
Liu, C. S. (2001). Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics, 36(7), 1047–1068.
Liu, C. S. (2004). Group preserving scheme for backward heat conduction problems. International Journal of Heat and Mass Transfer, 47(12–13), 2567–2576.
Liu, C. S. (2006). An efficient backward group preserving scheme for the backward in time Burgers equation. CMES - Computer Modeling in Engineering and Sciences, 12(1), 55–65.
Liu, C. S., Chang, C. W., & Chang, J. R. (2006). Past cone dynamics and backward group preserving schemes for backward heat conduction problems. CMES - Computer Modeling in Engineering and Sciences, 12(1), 67–81.
Liu, C. S., Chang, C. W., & Chang, J. R. (2010). The backward group preserving scheme for 1D backward in time advection-dispersion equation. Numerical Methods for Partial Differential Equations, 26(1), 61–80.
Loushabi, M., Mazaheri, M., & Mohammd Vali Samani, J. (2019). I‌N‌V‌E‌R‌S‌E S‌O‌L‌U‌T‌I‌O‌N O‌F T‌H‌E A‌D‌V‌E‌C‌T‌I‌O‌N-D‌I‌S‌P‌E‌R‌S‌I‌O‌N E‌Q‌U‌A‌T‌I‌O‌N I‌N R‌I‌V‌E‌R‌S F‌O‌R P‌O‌L‌L‌U‌T‌I‌O‌N S‌O‌U‌R‌C‌E I‌D‌E‌N‌T‌I‌F‌I‌C‌A‌T‌I‌O‌N. Sharif Journal of Mechanical Engineering, 35.3(1), 103–113 (inPersian).
Lu, H., & Yu, S. (2019). Pollutant source analysis and tempo-spatial analysis of pollutant discharge  intensity in a transboundary river basin. Environmental Science and Pollution Research International, 26(2), 1336–1354.
Ma, L. (2022). Exact Solutions of Three Types of Conformable Fractional-Order Partial  Differential Equations. Computational Intelligence and Neuroscience, 2022, 5295115.
Manson, J. R., Wallis, S. G., & Wang, D. (2000). A conservative, semi-Lagrangian fate and transport model for fluvial systems—II. numerical testing and practical applications. Water Research, 34(15), 3778–3785. h
Mazaheri, M., Mohammad Vali Samani, J., & Samani, H. M. V. (2015). Mathematical Model for Pollution Source Identification in Rivers. Environmental Forensics.
Mohan, S. R., & Bithin, D. (2006). Identification of Groundwater Pollution Sources Using GA-based Linked Simulation Optimization Model. Journal of Hydrologic Engineering, 11(2), 101–109.
Nardo, A. Di, Tuccinardi, F. P., Srl, P., Di Nardo, A., Santonastaso, G. F., Battaglia, R., Musmarra, D., Castaldo, F., Della Ventura, B., Iervolino, M., & Velotta, R. (2015). Smart identification system of surface water contamination by an innovative biosensor network VALUEMAG Project on BBI-2016-R09 View project Water Management View project Smart identification system of surface water contamination by an innovative biosensor. Conference: CEMEPE - 5th International Conference on Environmental Management, Engineering, Planning and Economics,.
Nave, Op., Shemesh, U., & HarTuv, I. (2021). Applying Laplace Adomian decomposition method (LADM) for solving a model of  Covid-19. Computer Methods in Biomechanics and Biomedical Engineering, 24(14), 1618–1628.
Neupauer, R. M., Borchers, B., & Wilson, J. L. (2000). Comparison of inverse methods for reconstructing the release history of a groundwater contamination source. Water Resources Research, 36(9), 2469–2475.
Neupauer, R. M., & Wilson, J. L. (2005). Backward probability model using multiple observations of contamination to identify groundwater contamination sources at the Massachusetts Military Reservation. Water Resources Research, 41(2), 1–14.
Nichols, R. H., & Heikkinen, B. D. (2006). Validation of implicit algorithms for unsteady flows including moving and deforming grids. Journal of Aircraft, 43(5), 1341–1351.
Nikinmaa, M. (2014). Chapter 4 - Sources and Transport of Chemicals in Aquatic Systems (M. B. T.-A. I. to A. T. Nikinmaa (ed.); pp. 47–52). Academic Press.
Nobile, R., Vahdati, M., Barlow, J. F., & Mewburn-Crook, A. (2014). Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. Journal of Wind Engineering and Industrial Aerodynamics, 125, 168–179.
Ojo, S. O., Trinh, L. C., Khalid, H. M., & Weaver, P. M. (2021). Inverse differential quadrature method: mathematical formulation and error  analysis. Proceedings. Mathematical, Physical, and Engineering Sciences, 477(2248), 20200815.
Paladino, O., Moranda, A., Massabò, M., & Robbins, G. A. (2018). Analytical Solutions of Three-Dimensional Contaminant Transport Models with  Exponential Source Decay. Ground Water, 56(1), 96–108.
Parker, J. C., & Kim, U. (2015). An upscaled approach for transport in media with extended tailing due to  back-diffusion using analytical and numerical solutions of the advection dispersion equation. Journal of Contaminant Hydrology, 182, 157–172.
Permanoon, E., & Mazaheri, M. (2021). Identify the source of pollution with an Inverse-time analytical solution to the pollution transport equation. Hydrophysics, 6(2), 25–39 (inPersian).
Pregla, R., & Pascher, W. (1989). The method of lines. Numerical Techniques for Microwave and Millimeter Wave Passive Structures, 1, 381–446.
Rockne, R. C., Hawkins-Daarud, A., Swanson, K. R., Sluka, J. P., Glazier, J. A., Macklin, P., Hormuth, D. A., Jarrett, A. M., Lima, E. A. B. F., Tinsley Oden, J., Biros, G., Yankeelov, T. E., Curtius, K., Al Bakir, I., Wodarz, D., Komarova, N., Aparicio, L., Bordyuh, M., Rabadan, R., … Scott, J. G. (2019). The 2019 mathematical oncology roadmap. Physical Biology, 16(4), 41005.
Rodman, C. H., & Martin, A. E. (2020). Quantification of spatiotemporal parameter behavior during walking speed  transitions. Journal of Biomechanics, 112, 110068.
Roohollah, N., Zhiqiang, D., Amin, K., & Torabi, K. F. (2016). How Reliable Are ANN, ANFIS, and SVM Techniques for Predicting Longitudinal Dispersion Coefficient in Natural Rivers? Journal of Hydraulic Engineering, 142(1), 4015039.
Saadat, َa. mohammad, Mazaheri, M., & MV Samani, J. (2022). Backward Solution (in-time) of the Pollution Transport Equation in River Using Group Preserving Scheme. Ferdowsi Civil Engineering (inPersian).
Santos, L., Thirel, G., & Perrin, C. (2018). Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0). Geoscientific Model Development, 11(4), 1591–1605.
Seifi, A., & Riahi-Madvar, H. (2019). Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and  ANN-based GA optimized models. Environmental Science and Pollution Research International, 26(1), 867–885.
Singh, R. K., Paul, T., Mahato, N. K., & Singh, M. K. (2023). Contaminant dispersion with axial input sources in soil media under non-linear  sorption. Environmental Technology, 44(13), 1903–1915.
Skaggs, T. H., & Kabala, Z. J. (1995). Recovering the History of a Groundwater Contaminant Plume: Method of Quasi‐Reversibility. Water Resources Research.
Toprak, Z. F., Sen, Z., & Savci, M. E. (2004). Comment on “Longitudinal dispersion coefficients in natural channels”. Water Research, 38(13), 3139–3143.
Tressler, A., & Uchrin, C. (2014). Mathematical simulation of chlorinated ethene concentration rebound after in situ  chemical oxidation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances &  Environmental Engineering, 49(8), 869–881.
Tsuzuki, Y. (2015). Relationships between pollutant discharge and water quality in the rivers from “better” to “worse” water quality. Ecological Indicators, 52, 256–269.
Vitanov, N. K. (2022). Simple Equations Method (SEsM): An Effective Algorithm for Obtaining Exact  Solutions of Nonlinear Differential Equations. Entropy (Basel, Switzerland), 24(11).
Wang, H., Cosnefroy, M., & Hornikx, M. (2021). An arbitrary high-order discontinuous Galerkin method with local time-stepping  for linear acoustic wave propagation. The Journal of the Acoustical Society of America, 149(1), 569.
Wang, J., Zhao, J., Lei, X., & Wang, H. (2018). New approach for point pollution source identification in rivers based on the  backward probability method. Environmental Pollution (Barking, Essex : 1987), 241, 759–774.
Wang, W., Ji, C., Li, C., Wu, W., & Gisen, J. I. A. (2023). Source identification in river pollution incidents using a cellular automata model and Bayesian Markov chain Monte Carlo method. Environmental Science and Pollution Research, 1–14.
Woolway, M., Jacobs, B. A., Momoniat, E., Harley, C., & Britz, D. (2020). Numerical Convergence Analysis of the Frank-Kamenetskii Equation. Entropy (Basel, Switzerland), 22(1).
Wu, Y., Wang, F., Wang, Q., Li, Y., & Jiang, S. (2019). A high temporal resolution numerical algorithm for shock wave velocity diagnosis. Scientific Reports, 9(1), 8597.
Xing, Y., Ji, Y., & Zhang, H. (2019). On the construction of a type of composite time integration methods. Computers & Structures, 221, 157–178.
Yuan, X.-C., Wang, M., Guo, X.-Y., & Wu, D.-L. (2022). [Analysis of the Seasonal Changes in Planktonic Microbial Diversity in Urban  River Supplied with Reclaimed Water: A Case Study of the North Canal River]. Huan jing ke xue= Huanjing kexue, 43(8), 4097–4107.
Zarif Sanayei, H. R., Javdanian, H., & Rakhshandehroo, G. R. (2021). Assessment of confined aquifer response to recharge variations and water inflow  distributions using analytical approach. Environmental Science and Pollution Research International, 28(36), 50878–50889.
Zhang, S., & Xin, X. (2017). Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm. Applied Water Science, 7(4), 1955–1963.
Zhang, T., Li, H., & Wang, S. (2011). Identification of particulate contaminant source locations in enclosed spaces with inverse CFD modelling. 12th International Conference on Indoor Air Quality and Climate 2011.
Zhou, J. G., Haygarth, P. M., Withers, P. J. A., Macleod, C. J. A., Falloon, P. D., Beven, K. J., Ockenden, M. C., Forber, K. J., Hollaway, M. J., Evans, R., Collins, A. L., Hiscock, K. M., Wearing, C., Kahana, R., & Villamizar Velez, M. L. (2016). Lattice Boltzmann method for the fractional advection-diffusion equation. Physical Review. E, 93, 43310.