ارزیابی روش‌های توسعه مدل اقلیمی چندگانه برمبنای CMIP5 برای بررسی پتانسیل استحصال آب از رطوبت هوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب ، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

3 گروه علوم و مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران.

چکیده

با توجه به اهمیت شناخت تاثیرات ناشی از تغییرات اقلیمی در بخش‌های مختلف، همچنین ادغام مدل‌های GCMs و توسعه مدل اقلیمی چندگانه (ECM)، پژوهش حاضر با هدف ارزیابی کارایی مدل‌های اقلیمی گزارش پنجم تغییر اقلیم (CMIP5) در شبیه‌سازی تغییرات متغیرهای جوی موثر بر پتانسیل استحصال آب از رطوبت هوا شامل میانگین دمای هوا، سرعت باد و رطوبت هوا و همچنین مقدار آب قابل استحصال از رطوبت هوا انجام گرفت. همچنین کارایی الگوریتم بهینه‌سازی در توسعه مدل اقلیمی چندگانه از دیگر اهداف مهم این پژوهش به شمار می‌رود. لازم بذکر است که در تحقیق حاضر از داده-های 16 ایستگاه سینوپتیک در محدوده شمال، شمال‌غرب ایران طی دوره آماری 2005-1991 استفاده شده است. براساس نتایج این پژوهش عملکرد مدل‌های اقلیمی به صورت منفرد در شبیه‌سازی تغییرات سرعت باد و رطوبت نسبی هوا ضعیف ارزیابی می‌شود. درحالیکه کاربرد روش بهینه‌سازی ضرایب منجر به کاهش میزان خطا و اریبی خروجی‌های اقلیمی در تخمین سرعت باد و رطوبت نسبی هوا شده است. علاوه بر این، بررسی کارایی مدل‌های اقلیمی در تخمین مقدار آب قابل استحصال حاکی از عملکرد قابل‌قبول مدل اقلیمی چندگانه در شبیه‌سازی تغییرات مقدار آب قابل استحصال از رطوبت هوا می-باشد. بطورکلی نتایج نشان داد که ایستگاه‌های منجیل و بندرانزلی مستعدترین منطقه برای اجرای طرح‌های استحصال آب از رطوبت هوا می‌باشند، درمقابل ایستگاه‌های اراک و همدان از کمترین پتانسیل برای استحصال آب برخوردار می‌باشند، براساس نتایج، متوسط آب قابل استحصال از رطوبت هوا در فصل تابستان برای ایستگاه‌های فوق 56/1 و 78/1 لیتر در روز در متر مربع برآورد شده است. همچنین بررسی تغییرات فصلی پتانسیل استحصال آب از رطوبت نشان داد که پتانسیل استحصالی آب از رطوبت هوا در فصل تابستان بیشتر از سایر فصل‌ها می‌باشد، بنابراین ضروری است که مدیریت منابع آب و کشاورزی، برنامه‌ریزی و اقدامات جدی به منظور استفاده از این منبع آبی برای کاربرد در بخش‌های کشاورزی، آبیاری فضای سبز و حتی در صورت کفایت از نظر کمی و کیفی برای تامین بخشی از نیاز شرب صورت پذیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Ensemble Climate Model development methods based on CMIP5 to investigate the potential of water harvesting from air humidity

نویسندگان [English]

  • hadi ramezani etedali 1
  • Sakine Koohi 2
  • Zahra Partovi 3
1 Water sciences and engineering, department, faculty of agricultural and natural resources. Imam Khomeini international university, Qazvin, Iran.
2 Water sciences and engineering, department, faculty of agricultural and natural resources. Imam Khomeini international university, Qazvin, Iran.
3 Department of Water Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Recognizing the effects of climate change in different sectors, as well as the integration of GCM models and the development of Ensemble Climate Models (ECM) are vital. In this study, the efficacy of the climate models from the CMIP5 in simulating atmospheric variables impacting the potential for water harvesting was assessed. These variables encompass mean air temperature, wind speed, relative humidity, and the feasible quantity of water harvested from air moisture. Also, assessing the efficiency of the optimization algorithm (Genetic Algorithm) in the development of an ensemble climate model was another goal of this research. It is noteworthy that the present investigation employed data from 16 synoptic stations situated in the northern and northwestern regions of Iran during the statistical period of 1991-2005. Results indicated that the performance of individual climate models in simulating variations in wind speed and relative air humidity is deemed poorly. Conversely, GA has yielded a reduction in both error magnitude and biases in climatic outputs in estimating wind speed and relative air humidity. Furthermore, the evaluation of the efficacy of climate models in estimating the water harvesting potential from air humidity indicates the acceptable performance of ECM in simulating changes in the amount of extractable water from air humidity. In general, the results showed that Manjil and Bandar-Anzali stations are the most suitable areas for the implementation of water harvesting projects from air humidity. Conversely, Arak and Hamedan stations exhibit the least potential for water harvesting. Based on the results, the average water that can be extracted from air humidity in the summer season for Manjil and Bandar-Anzali stations is estimated to be 1.56 and 1.78 (l/day.m2). Also, the seasonal changes of water harvesting potential from air humidity showed that the potential of extracting water in summer is more than the other seasons. This accentuates the urgency of water resource management and agricultural planning, prompting the implementation of substantial measures to use this water source. The potential applications of using this source encompass agricultural sectors, green space irrigation, and potentially catering to a portion of drinking water demands, contingent upon quantity and quality parameters.

کلیدواژه‌ها [English]

  • Atmospheric Variables
  • Climate Change
  • CORDEX
  • Unconventional Water Sources

Evaluation of Ensemble Climate Model development methods based on CMIP5 to investigate the potential of water harvesting from air humidity

EXTENDED ABSTRACT

 

Introduction

The efficient utilization of GCMs for simulating atmospheric variables holds crucial significance in water resources planning. The combination of multiple climate models can present an avenue to mitigate the inherent uncertainties associated with these models. However, a pivotal concern revolves around the combination and weighting methodologies for each model within this context. Simultaneously, exploring novel water sources such as air humidity extraction emerges as a viable strategy to mitigate the adverse impacts of water scarcity and drought, especially in arid and semi-arid regions. Notably, alterations in atmospheric variables like air humidity, wind speed, and temperature exert a direct influence on the potential for water harvesting from the air, a process susceptible to climate change dynamics. In this context, this study aims to evaluate the effectiveness of two distinct approaches in developing ensemble climate models, against the utilization of individual models. This evaluation extends to the simulation of atmospheric variables encompassing wind speed, air humidity, average temperature, and the water harvesting potential from the atmosphere.

Methods

The research area investigated includes 16 synoptic stations (1991 to 2005), situated within the longitudinal range of 47 degrees and 19 minutes to 53 degrees and 17 minutes, and the latitudinal range of 33 degrees and 25 minutes to 38 degrees and 55 minutes. Additionally, this study draws on data derived from three GCM models from the CMIP5 report within the framework of the CORDEX climate project. The development of an ensemble climate model has been executed utilizing an identical weighting approach and a genetic optimization algorithm. The amount of extractable water from air humidity is determined via . The performance assessment of climate outputs incorporates statistical indexes such as the Correlation Coefficient (CC), Mean Bias Error (MBE), and Relative Bias (RBIAS).

Results and Discussion

Using the optimization technique to combine climate models yields a notable reduction of 60.1, 58.7, 60.9, and 59.7 percent in the RMSE value when compared to individual utilization of CNRM, GFDL, and CCSM4 models and the averaging approach in wind speed simulation. Furthermore, the development of ensemble models corresponds to a substantial enhancement in the accuracy of these models in estimating relative air humidity (average RMSE = 8.25 %, average MBE = 2.17 %). Based on the results, the combination of climate models can have a positive effect on increasing the efficiency of climate outcomes, especially in the reproduction of atmospheric variables such as relative air humidity and wind speed (usually climate models individually have a poor performance in simulating variables such as relative humidity and wind speed). This methodology has also been applied to approximate the extractable water amount from air humidity. An examination of seasonal changes in the potential for water harvesting from air humidity reveals the optimized coefficient-based combined climate model to closely mirror observational data. Additionally, the summer and winter seasons exhibit the highest and lowest capacities for water harvesting from air humidity, respectively.

Conclusions

Leveraging the genetic algorithm for coefficient optimization within climate models and the creation of ensemble climate models presents a valuable approach for exploring changes in atmospheric variables and the feasibility of water harvesting from air humidity in response to climate change. Examination of seasonal alterations in water harvesting potential from air humidity indicates the substantial potential of the summer period for implementing air humidity water harvesting plans, which can hold significance in addressing a portion of agricultural requirements.

Ahmed, K., Sachindra, D. A., Shahid, S., Iqbal, Z., Nawaz, N., & Khan, N. (2020). Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmospheric Research, 236, 104806. https://doi.org/10.1016/j.atmosres.2019.104806.
Alizadeh, A. (2010). Principle of Applied Hydrology. Emam Reza University Press. (In Persian).
Bisht, D. S., Sridhar, V., Mishra, A., Chatterjee, C., & Raghuwanshi, N. S. (2019). Drought characterization over India under projected climate scenario. International Journal of Climatology, 39(4), 1889–1911. https://doi.org/10.1002/joc.5922.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., MagañaRueda, V., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., & Whetton, P. (2007). Regional Climate Projections. In Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Das, S., Das, J., & V.Nanduri, U. (2021). Identification of Future Meteorological Drought Hotspots over Indian Region: A Study Based on NEX‐GDDP Data. International Journal of Climatology. https://doi.org/https://doi.org/10.1002/joc.7145.
Dunn, R. J. H., Willett, K. M., Ciavarella, A., & Stott, P. A. (2017). Comparison of land surface humidity between observations and CMIP5 models. Earth System Dynamics, 8(3), 719–747. https://doi.org/10.5194/esd-8-719-2017.
Gaitán, E., Monjo, R., Pórtoles, J., & Pino-Otín, M. R. (2020). Impact of climate change on drought in Aragon (NE Spain). Science of the Total Environment, 740. https://doi.org/10.1016/j.scitotenv.2020.140094.
Giorgi, F., & Gutowski, W. J. (2016). Coordinated experiments for projections of regional climate change. Current Climate Change Reports, 2, 202–210.
Haile, G. G., Tang, Q., Hosseini-Moghari, S. M., Liu, X., Gebremicael, T. G., Leng, G., Kebede, A., Xu, X., & Yun, X. (2020). Projected Impacts of Climate Change on Drought Patterns Over East Africa. Earth’s Future, 8(7), 1–23. https://doi.org/10.1029/2020EF001502.
Holland, J. H. (1975). Adaptations in Natural and Artificial Systems. University of Michigan Press.
Hosseinabadi, S., Yaghoobzadeh, M., Amirabadizadeh, M., & Foroozanmehr, M. (2020). Meteorological Drought Assessment in Future Periods by Using of the Data of the Fifth Report of Climate Change (Case Study: Zabol and Shiraz Cities). Journal of Arid Regions Geographics Studies, 10(40), 78–87. (In Persian).
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.
IPCC. (2013). Climate change 2013: The physical science basis IPCC working group I contribution to AR5. Retrieved October 18, 2018. http://www.ipcc.ch/report/ar5/wg1/.
Jain, S., Salunke, P., Mishra, S. K., & Sahany, S. (2019). Performance of CMIP5 models in the simulation of Indian summer monsoon. Theoretical and Applied Climatology, 137, 1429–1447. https://doi.org/10.1007/s00704-018-2674-3.
Jiang, R., Liang, J., Zhao, Y., Wang, H., Xie, J., Lu, X., & Li, F. (2021). Assessment of vegetation growth and drought conditions using satellite-based vegetation health indices in Jing-Jin-Ji region of China. Scientific Reports, 11(1), 1–18. https://doi.org/10.1038/s41598-021-93328-z.
KarimpourReihan, M., Alizadeh, M., & Kamalian, S. (2016). Selection of suitable sites for water harvesting from air humidity in Bushehr province using GIS. Quarterly of Geography & Regional Planning, 6(25), 43–51. (In Persian).
Khan, J. U., Islam, A. K. M. S., Das, M. K., Mohammed, K., Bala, S. K., & Islam, G. M. T. (2020). Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble. Climatic Change, 162(2), 667–685. https://doi.org/10.1007/s10584-020-02832-0.
Kharuk, V. I., Ranson, K. J., & Dvinskaya, M. L. (2007). Evidence of evergreen conifer invasion into larch dominated forests during recent decades in central Siberia. Eurasian Journal of Forest Research, 10(2), 163–171. https://doi.org/http://hdl.handle.net/2115/30308.
Koohi, S., & Ramezani Etedali, H. (2022). Future meteorological drought conditions of southwestern Iran based on the NEX-GDDP climate dataset. Journal of Arid Land.
Mahmoudi, P., KhajehAmiriKhaledi, C., & SalariFanodi, M. R. (2016). Examining the feasibility of water harvesting from air humidity in the Southern province of Sistan and Baluchestan. Journal of Water and Soil Conservation, 23(2), 253-263. https://doi.org/10.22069/JWFST.2016.3067. (In Persian).
Mirakbari, M., Mesbahzadeh, T., MohseniSaravi, M., Khosravi, H., & MortezaieFarizhendi, G. (2018). Performance of Series Model CMIP5 in Simulation and Projection of Climatic Variables of Rainfall, Temperature and Wind Speed (Case Study: Yazd). Physical Geography Research Quarterly, 50(3), 593–609. https://doi.org/10.22059/JPHGR.2018.248177.1007156. (In Persian).
Mohan, S., & Bhaskaran, P. K. (2019). Evaluation of CMIP5 climate model projections for surface wind speed over the Indian Ocean region. Climate Dynamics, 53(9–10), 5415–5435. https://doi.org/10.1007/s00382-019-04874-2.
Pearson, K. (1896). Mathematical Contributions to the Theory of Evolution.–On a Form of Spurious Correlation Which May Arise When Indices Are Used in the Measurement of Organs. Proceedings of the Royal Society of London, 60, 489–498.
Raghavan, S. V., Liu, J., Nguyen, N. S., Vu, M. T., & Liong, S. Y. (2018). Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology, 132(3–4), 989–1002. https://doi.org/10.1007/s00704-017-2111-z.
Rathore, P., Roy, A., & Karnatak, H. (2019). Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecological Indicators, 102(November 2017), 199–207. https://doi.org/10.1016/j.ecolind.2019.02.020
Shagega, F. P., Munishi, S. E., & Kongo, V. M. (2019). Prediction of future climate in Ngerengere river catchment, Tanzania. Physics and Chemistry of the Earth, 112, 200–209. https://doi.org/10.1016/j.pce.2018.12.002
Shen, M.-L., Keenlyside, N., Selten, F., Wiegerinck, W., & Duane, G. S. (2016). Dynamically combining climate models to “supermodel” the tropical Pacific. Geophysical Research Letters, 43, 359–366. https://doi.org/10.1002/2015GL066562
Sood, A., & Smakhtin, V. (2015). Global hydrological models: a review. Hydrological Sciences Journal, 60(4), 549–565. https://doi.org/10.1080/02626667.2014.950580
Stanski, H. R., Wilson, L. J., & Burrows, W. R. (1989). Survey of Common Verification Methods in Meteorology (2nd ed.). World Meteorological Organization.
Su, B., Jian, D., Li, X., Wang, Y., Wang, A., Wen, S., Tao, H., & Hartmann, H. (2017). Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5° C and 2.0° C in the Tarim River basin, China. Atmospheric Research, 196, 119–128.
Swain, S., & Hayhoe, K. (2015). CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dynamics, 44(9–10), 2737–2750. https://doi.org/10.1007/s00382-014-2255-9
Wang, B., Zheng, L., Liu, D. L., Ji, F., Clark, A., & Yu, Q. (2018). Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. International Journal of Climatology, 38(13), 4891–4902. https://doi.org/10.1002/joc.5705
Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3(March 2013), 4–13. https://doi.org/10.1016/j.wace.2014.01.002
Yousefi, B., & BoroomandNasab, S. (2015). Desalination Using the Condensation Irrigation System, A Case Study of the Research Farm of Shahid Chamran University of Ahvaz. Water and Wastewater Consulting Engineers, 26(3), 127–133. (In Persian).
Zhang, S., Chen, F., He, X., & Liu, B. (2017). A new downscaling approach and its performance with bias correction and spatial disaggregation as contrast. Journal of Water and Climate Change, 8(4), 675–690. https://doi.org/10.2166/wcc.2017.010