ارزیابی دقت برآورد تغذیه آب زیرزمینی توسط SWAT و MODFLOW در اراضی شالیزاری (مطالعه موردی : آبخوان آستانه- کوچصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

2 گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، گیلان.

3 عضو هیات علمی گروه مهندسی آب پردیس ابوریحان دانشگاه تهران

چکیده

در این مطالعه، دقت برآورد مقادیر تغذیه آبخوان کم عمق آستانه-کوچصفهان، با استفاده از دو کد مدل‌سازی SWAT (به عنوان مدل هیدرولوژیکی آب سطحی) و MODFLOW (به عنوان مدل آب زیرزمینی) مقایسه شد. علاوه بر این، ضرورت استفاده از SWAT در مدل‌سازی-های جریان آب زیرزمینی که توسط  MODFLOWانجام می‌گیرد، مورد بررسی قرار گرفت. بدین منظور شبیه‌سازی آبخوان آستانه-کوچصفهان در MODFLOW انجام شد. سپس SWAT برای حوضه‌ی آبریز آستانه-کوچصفهان تهیه و اجرا شد و توسط الگوریتم SUFI2 در نرم‌افزار SWAT-CUP مورد واسنجی قرار گرفت. در ادامه بعد از تعیین محدوده‌ی مکانی و زمانی مشترک دو مدل، اقدام به استخراج مقادیر تغذیه به آبخوان از خروجی‌های دو مدل گردید. نتایج نشان داد که کل تغذیه به آبخوان و تغذیه از رودخانه به آبخوان در سال آبی 92-1391 در MODFLOW به ترتیب برابر با 71/102 میلیون متر مکعب و 71/23 میلیون متر مکعب بدست آمد. بیشترین مقادیر تغذیه در اواخر فصل پاییز و ماه آذر 1391 رخ داده است و کمترین مقادیر تغذیه در اوایل فصل بهار و ماه فروردین 1392 اتفاق افتاده است. در SWAT نیز مقادیر تغذیه به آبخوان و تغذیه از رودخانه به آبخوان به ترتیب برابر با 34/138 میلیون متر مکعب و 09/35 میلیون متر مکعب برآورد شده است. بیشترین مقادیر تغذیه در اواخر فصل پاییز و ماه آذر 1391 رخ داده است و کمترین مقادیر تغذیه در اواخر فصل تابستان و ماه شهریور 1392 اتفاق افتاده است. SWAT با استفاده از به کارگیری پارامترهای آب سطحی و موثر بر تغذیه مانند تاثیر سد و کانال‌های انتفال آب، خصوصیات خاک و کاربری اراضی، اطلاعات اقلیمی و هواشناسی، اطلاعات مربوط به مدیریت کشاورزی و آبیاری و غیره مقادیر قابل اطمینان‌تری از پارامتر تغذیه به آب زیرزمینی را با توجه به واقعیت‌های موجود در منطقه، به‌دست می‌آورد، لذا استفاده از خروجی قابل اطمینان تغذیه از SWAT در مدل‌های آب زیرزمینی مانند MODFLOW نتایج بهتر و قابل اطمینان‌تری از وضعیت آبخوان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Accuracy assessment of groundwater recharge estimation using SWAT and MODFLOW in paddy fields (Case study: Astane-Kouchsefahan aquifer)

نویسندگان [English]

  • Iman Mehdidoost Roudbaneh 1
  • Somaye Janatrostami 2
  • Afshin Ashrafzadeh 1
  • Saman Javadi 3
1 Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
2 Department of Water Engineering, College of Agriculture, University of Guilan, Rasht, Guilan.
3 Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
چکیده [English]

In this study, the accuracy of estimating shallow aquifer recharge values in Astane-Kouchsefahan using two models: SWAT (a surface water hydrological model) and MODFLOW (a groundwater flow model) was evaluated. Then the need for using SWAT in the modeling of groundwater flow, which is typically done by MODFLOW, was evaluated. For this purpose, the simulation of the Astane-Kouchsefahan aquifer was done by MODFLOW using GMS graphical user interface. Then the SWAT model was built for the Astane-Kochsefahan watershed and calibrated by the SUFI2 algorithm in SWAT-CUP software. In the following, after determining the two models' common spatial and temporal range, the aquifer recharge amounts were compared according to the outputs of the two models. MODFLOW results showed that the total aquifer recharges including recharge from the river in 1391-1392 were equal to 102.71 and 23.71 million m3, respectively. The highest and the lowest amounts of aquifer recharge occurred in December and April, respectively. The results of SWAT showed that the amounts of aquifer recharges including recharge from the river are estimated to be 138.34 and 35.09 million m3, respectively. So, the highest and the lowest recharge amount occurred in December and September, respectively. Based on the regional circumstances, SWAT offers more dependable estimates of the groundwater recharge parameters by considering surface water parameters and factors like the influence of dams and water transfer channels, soil characteristics, land use, climatic and meteorological data, and information regarding agriculture and irrigation management. Consequently, integrating the precise recharge results from SWAT into groundwater models such as MODFLOW leads to enhance and more reliable evaluations of the aquifer's state.

کلیدواژه‌ها [English]

  • Shallow aquifer
  • Water balance
  • surface recharge
  • SWAT
  • MODFLOW

Accuracy assessment of groundwater recharge estimation using SWAT and MODFLOW models in paddy fields

EXTENDED ABSTRACT

Introduction:

Groundwater recharge values depend on surface hydrological processes temporally and spatially and change with changes in weather conditions, land use, soil, vegetation, etc. It is impossible to include these factors in the models used to simulate groundwater flow, and in most cases, only the effect of precipitation is considered. Aquifer recharge is entered into the model as a percentage of rainfall, and the recharge values are calibrated during the calibration of the model. Recently, advanced models have been developed to model groundwater recharge and determine potential recharge areas, and the SWAT model is one of these models. The SWAT model is designed to predict the effect of different land management methods on the amount of water, sediment, and agricultural chemicals in the level of complex and large watersheds with soil, land use, and different management conditions in the long term.

Objective:

In this study, because the SWAT model takes into account the factors affecting the groundwater recharge and in the groundwater balance equation of this model, the recharge parameter includes any surface recharge, including agricultural return water, rainfall, infiltration of rivers and surface runoff, estimation of Astane-Kochsefahan aquifer recharge was estimated by two models; SWAT and MODFLOW, and the results compared togeather.

Materials and methods:

Considering the amount of surface recharge of groundwater in the MODFLOW model consists of infiltration from precipitation, agriculture, drinking, and industrial return flow, as well as infiltration from dam reservoir, at this stage, the pond recharge is not considered in the SWAT model; therefore, it was removed from the recharge values of the MODFLOW model. In this way, the recharge values of the two models were compared.

Results and discussion:

 

Surface recharge in the MODFLOW model, which consists of recharge from precipitation and return flow and infiltration from dam’s reservoirs, in the whole aquifer in 2011-2012 was equal to 232.98 million m3. Surface recharge rate MODFLOW in the common area with SWAT model in 1391-92 was equal to 78.96 million m3, which increased to 102.71 million m3 along with recharge from the river. The sensitivity analysis of the MODFLOW model showed that the parameters of surface recharge, hydraulic conductivity, and specific drainage coefficient were the most sensitive. Therefore, recharge parameter in groundwater flow modeling has a key role in determining the water balance. The results of SWAT to calculate the recharge to the shallow aquifer showed that the recharge in the common area with the MODFLOW model in 1391-2012 is equal to 136.27 million m3, which was estimated to be 138.34 million m3, including the recharge from the rivers.

Conclusion:

One of the advantages of the SWAT model is that it considers surface water processes in calculation of aquifer recharge, while in MODFLOW, these processes are not considered. Therefore, the recharge values calculated by SWAT have higher accuracy. In addition, the recharge calculated with the SWAT model is more compatible with the trend of changes in recharge values than with MODFLOW because the patterns of precipitation, the release of the Sefidroud Dam, and the released of water in the water transfer channels are considered in the SWAT model. The comparison of the results showed that the total amount of surface recharge estimated by SWAT was more than the estimated amount by MODFLOW. Considering that the groundwater level values simulated by MODFLOW model were lower than the observed water level values, to reach answers close to reality, the recharge values from SWAT are evaluated in groundwater flow modeling.

Adeyeye, O. A., Ikpokonte, E. A., & Arabi, S. A., (2019). GIS-based groundwater potential mapping within Dengi area, North Central Nigeria. The Egyptian Journal of Remote Sensing and Space Science, 22 (2), 175–181. https://doi.org/10.1016/j.ejrs.2018.04.003.
Al-Djazouli, M. O., Elmorabiti, K., Rahimi, A., Amellah, O., & Fadil, O. A. M. (2021). Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: a case of Waddai, eastern Chad. GeoJournal, 86, 1881–1894. https://doi.org/10.1007/s10708-020-10160-0.
Arnous, M. O., El-Rayes, A. E., Geriesh, M. H., Ghodeif, K. O., & Al-Oshari, F. A. (2020). Groundwater potentiality mapping of tertiary volcanic aquifer in IBB basin, Yemen by using remote sensing and GIS tools. Journal of Coastal Conservation, 24 (3), https://doi.org/ 10.1007/s11852-020-00744-w.
Awan, U. K. & Ismaeel, A. (2014). A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of hydrology, 519(27), 1368-1382. https://doi.org/10.1016/j.jhydrol.2014.08.049.
Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regionalscale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrologicaal Processes, 30 (23), 4420-4433. https://doi.org/10.1002/hyp.10933.
Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676. https://doi.org/10.1016/j.ejrh.2020.100676.
Bhowmick, A., & Ojha, J. R., (2019). Integrated GIS and remote sensing techniques for geospatial analysis of groundwater potential zones of Bilate river catchment, main Ethiopian Rift valley. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8 (6), 334–342.
Anonymous. (2004). Rehabilitation Studies of the Sefidroud irrigation and drainage network, Gilan. Gilan Regional Water Authority, Pandam Consulting Engineers, Volume 10. (In Persian)
Anonymous. (2006). Quantitative and qualitative modeling of the aquifer and integration of surface water and groundwater in the Astana-Kuchsefahan study area. Ministry of Energy, Gilan Regional Water Authority, Department of Basic Studies of Water Resources, Kamand Ab Consulting Engineers. (In Persian)
Anonymous. (2009). Guidelines for estimating the subsurface drainage coefficient in irrigated fields in arid and semi-arid areas. Deputy of Strategic Planning and control of the President's Office, No. 492. (In Persian)
Anonymous. (2014). Study of plains using quantitative and qualitative measurement networks in the Astana-Kuchsefahan study area. Iran Water Resources Management Company, Gilan Regional Water Authority, Department of Basic Studies of Water Resources, Toula Rood Gil Consulting Engineers. (In Persian)
Bizhanimanzar, M., Leconte, R., & Nuth, M. (2020). Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using Conceptual and Physically Based Models: A Model Comparison Study. Water, 12(2), 363.  https://doi.org/10.3390/w12020363.
Chung, I. M., Kim, N. W., Lee, J. & Sophocleous, M. (2010). Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeology Journal, 18, 1253-1264. https://doi.org/10.1007/s10040-010-0593-1.
Crosbie, R. S., Peeters, L. J., Herron, N., McVicar, T. R. & Herr, A. (2018). Estimating groundwater recharge and its associated uncertainty: use of regression kriging and the chloride mass balance method. Journal of hydrology, 561: 1063-1080. https://doi.org/10.1016/j.jhydrol.2017.08.003.
Dar, T., Rai, N., & Bhat, A. (2020). Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology, and Landscapes, 5(4), 292-307.https://doi. org/10.1080/24749508.2020.1726562.
Das, N., & Mukhopadhyay, S. (2018). Application of Multi-Criteria Decision Making Technique for the Assessment of Groundwater Potential Zones: A Study on Birbhum District, West Bengal, India. Environment, Development and Sustainability, 22, 931–955. https://doi.org/10.1007/s10668-018-0227-7.
Dekongmen, B. W., Anornu, G. K., Kabo-Bah, A. T., Larbi, I., Sunkari, E. D., Dile, Y. T., Agyare, A., & Gyamfi, C. (2022). Groundwater recharge estimation and potential recharge mapping in the Afram Plains of Ghana using SWAT and remote sensing techniques. Groundwater for Sustainable Development, 17: 100741. https://doi.org/10.1016/j.gsd.2022.100741.
Doble, R. C., Pickett, T., Crosbie, R. S., Morgan, L. K., Turnadge, C., & Davies, P. J. (2017). Emulation of recharge and evapotranspiration processes in shallow groundwater systems. Journal of hydrology, 555, 894–908. https://doi.org/10.1016/j.jhydrol.2017.10.065.
Donigian, A. S. (2000). HSPF Training Workshop Handbook and CD, Lecture 19, Calibration and verification Issues, Slide L19-22. EPA Headquarters, Washington Information Center, Presented and prepared for U.S. EPA, Office of Water, Office of Science and Technology, Washington, DC.
Fontaine, T. A., Cruickshank, T. S., Arnold, J. G. & Hotchkiss, R. H. (2002). Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal Hydrology, 262 (1-4), 209-223. https://doi.org/10.1016/S0022-1694(02)00029-X.
Gemitzi, A., Ajami, H. & Richnow, H. H. (2017). Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data – Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology, 546:1–13. https://doi.org/10.1016/j.jhydrol.2017.01.005.
Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., & Srinivasan, R.  (2015). A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software, 73, 103–11. https://doi.org/10.1016/j.envsoft.2015.08.011.
Kim, N., Chung, I., Won, Y. & Arnold, J. (2008). Development and application of the integrated SWAT-MODFLOW model. Journal of hydrology, 356(1-2), 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024.
Loukika, K. N., Venkata Reddy, K., Durga Rao, K. H. V., & Singh, A. (2020). Estimation of Groundwater Recharge Rate Using SWAT MODFLOW Model. Applications of Geomatics in Civil Engineering, Lecture Notes in Civil Engineering, 33, 143–154. https://doi.org/10.1007/978-981-13-7067-0_10.
McDonald, M. G. & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model: U.S. Geological Survey Techniques of Water- Resources Investigations, book 6, chap. A1, 586 p.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/10.13031/2013.23153
Mosasea, E., Ahiablame, L., Park, S., & Bailey, R. (2019). Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundwater for Sustainable Development, 9, 100260. https://doi.org/10.1016/j.gsd.2019.100260.
Naghibi, S. A., Pourghasemi, H. R., & Abbaspour, K. (2018). A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131 (3–4), 967–984. https://doi.org/ 10.1007/s00704-016-2022-4.
Nazarieh, F., Ansari, H., Ziaei, A. N., Davari, k., & Izadi, A. A. (2018). Estimation of the Recharge spatiotemporal pattern by Distribute PRMS model (Case study: Neishaboor watershed). Iran-Water Resources Research. 14(1): 226-238. (In Persian)
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J.R. (2011). Soil and water assessment tool theoretical document version 2009. Texas water resource institute.
Ntona, M. M., Busico, G., Mastrocicco, M., & Kazakis, N. (2022). Modeling groundwater and surface water interaction: An overview of current status and future challenges. Science of The Total Environment, 846, 157355. https://doi.org/10.1016/j.scitotenv.2022.157355.
Pirmoradian, N., & Davatgar, N. (2019). Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop. Agricultural water management, 213, 97-106. https://doi.org/10.1016/j.agwat.2018.10.003.
Raja, O., Parsinejad, M., & Tajrishy, M. (2022). Simulation of Groundwater Balance Using Integrated Surface and Groundwater SWAT-MODFLOW-NWT Model (Case Study: Mahabad Plain). Journal of water and soil, 36(1), 31-52. https://doi.org/10.22067/JSW.2022.74890.1138. (In Persian)
Saadatpour, A., Alizadeh, A., Ziaei, A.N., & Izady, A. (2019). Integrated Surface and Groundwater Flow Modeling in Neishaboor Watershed with SWAT-MODFLOW. Journal of water and soil, 33(4), 521-536. https://doi.org/10.22067/JSW.V0I0.74658. (In Persian)
Waseem, M., Kachholz, F., Klehr, W., & Tränckner, T. (2020). Suitability of a Coupled Hydrologic and Hydraulic Model to Simulate Surface Water and Groundwater Hydrology in a Typical North-Eastern Germany Lowland Catchment. Applied sciences, 10(4), 1281. https://doi.org/10.3390/app1004128.