رفتارسنجی تولید رواناب در خاک‌های آلوده به گازوییل در اثر تلقیح ریزموجودات خاک‌زی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران

2 گروه زیست‌شناسی دریا، دانشکده علوم‌دریایی، دانشگاه تربیت مدرس، نور، ایران

3 گروه مهندسی معدن و محیط زیست، دانشکده فنی مهندسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

رواناب یکی از مهم‌ترین فرآیندهای هیدرولوژیکی در بوم‌سازگان می‌باشد که مهار آن اهمیت بسیاری در مدیریت از منابع خاک‌وآب دارد. اگرچه به‌کارگیری ریزموجودات خاک‌زی به‌عنوان تلقیح‌کننده‌های خاک در مدیریت زیست‌مهندسی رواناب‌ مورد تأیید قرار گرفته، اما کاربست آن‌ها در مهار رواناب در خاک‌ آلوده به مواد نفتی موردتوجه قرار نگرفته است. ازاین‌رو به‌منظور ارزیابی تلقیح باکتری‌ها، سیانوباکتری‌ها و قارچ‌ خاک‌زی در کاهش رواناب در خاک‌ آلوده به مواد نفتی، پژوهش حاضر در مقیاس کرت­ با ابعاد نیم در نیم متر با شیب حدود 25 درصد، میزان آلودگی20000 میلی‌گرم بر کیلوگرم گازوییل و شاهد با سه تکرار، شدت بارش حدود 35 میلی­متر بر ساعت با دوام 30 دقیقه­ تحت شبیه­سازی باران در دانشکده منابع طبیعی دانشگاه تربیت مدرس انجام شد. نتایج نشان داد که تیمارهای تلقیحی باعث بهبود مؤلفه‌های رواناب شدند، اگرچه اختلاف عملکردی آماری معنی‌دار نسبت به تیمار شاهد (05/0P) نداشتند. مقایسه میانگین‌ها نشان داد که تیمارهای باکتری، سیانوباکتری، قارچ، مجموع باکتری و قارچ، باکتری و سیانوباکتری، سیانوباکتری و قارچ، باکتری، سیانوباکتری و قارچ به‌ترتیب باعث افزایش10/47، کاهش 08/0، 72/10، 86/24، افزایش 85/14، 88/49 و 88/27 درصدی زمان شروع رواناب، افزایش 58/4، کاهش 04/54، 19/65، افزایش 20/72، کاهش 36/41، 53/84 و افزایش 15/40 درصدی حجم رواناب و افزایش 75/4، کاهش 06/54، 15/65، افزایش 28/72، کاهش 39/41، 55/84 و افزایش20/40 درصدی ضریب رواناب شدند. نتایج این پژوهش دلالت بر عملکرد نسبی هم‌افزایی تیمار سیانوباکتری+قارچ در کاهش اثر گازوییل بر تولید رواناب داشت. در نهایت نتایج پژوهش نشان می‌دهد که تلقیح باکتری، سیانوباکتری و قارچ خاک‌زی بومی می‌تواند یک فناوری زیستی کارآمد و پایدار برای بهبود مؤلفه‌های رواناب در راستای حفاظت از مناطق آلوده به مواد نفتی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Studying Behavior of Runoff Generation in a Gasoil Contaminated Soils due to Inoculation of Soil Microorganism

نویسندگان [English]

  • Azam Mumzaei 1
  • Seyed Hamidreza Sadeghi 1
  • Behrouz Zarei Darki 2
  • Mehdi Homaee 3
1 Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
2 Department of Marine Biology, Faculty of Marine Science, Tarbiat Modares University, Noor, Iran
3 Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Runoff is one of the most important hydrological processes in ecosystems, which is very important in the management of water and soil resources. Although the use of soil microorganisms as soil inoculants in the bioengineering management of runoff has been confirmed, the use of soil microorganisms to control runoff in soils contaminated with petroleum has not been considered. Therefore, in order to evaluate inoculation of soil Bacteria, Cyanobacteria and fungi in reducing runoff in soil contaminated with petroleum, the present study was carried at plots of 0.5×0.5 m with slope of some 25% and level of 20000 mg kg-1 of gasoil and control contamination in three replicates. The plots will be then subjected to rainfall intensity of some 35 mm h−1 and duration of 30 min installed at the Rainfall Simulation Laboratory of Tarbiat Modares University at Faculty of Natural Resources. The results showed that the inoculation treatments, although there was no significant difference compared to the control treatment (P>0.05) except for the start of runoff (P

کلیدواژه‌ها [English]

  • Biological Crust
  • Petroleum Pollutants
  • Runoff Control
  • Soil and Water Conservation
Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C., & Marques da Silva, J. (2018). Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 116, 67-69. https://doi.org/10.1016/j.soilbio.2017.10.002.
Ahmadi, M., Abbaspour, M., Ebadi, T., & Maknoon, R. (2021). Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures. Engineering Geology, 283, 106021. https://doi.org/10.1016/j.enggeo.2021.106021.
Al-Abadi, N. J. A. (2023). The role of the oil industry in environmental pollution-effects and suggested solutions. Global Ecology and Sustainable Development, 12, 67-87. https://www.journalzone.org/index.php/bjgesd/article/view/209.
Anderson, R. A. (2005). Algal Culturing Techniques. Elsevier Academic Press, London, 496p.
Arnaez, J., Lasanta, T., Ruiz-Flano, P., & Ortigosa, L. (2007). Factors Affecting Runoff and Erosion under Simulated Rainfall in Mediterranean Vineyards. Soil and Tillage Research, 93(2), 324-334. https://doi.org/10.1016/j.still.2006.05.013.
Asemoloye, M. D., Tosi, S., Daccò, C., Wang, X., Xu, S., Marchisio, M. A., Gao, W., Jonathan, S. G., & Pecoraro, L. (2020). Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from nigerian crude oil-polluted sites. Microorganisms, 8(12), 1912.  https://doi.org/10.3390/microorganisms8121912.
Barger, N. N., Castle, S. C., & Dean, G. N. (2013). Denitrification from nitrogenfixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecological Processes, 2(1), 1-9. https://doi.org/10.1186/2192-1709-2-16.
Barger, N.N., Weber, B., Garcia-Pichel, F., Zaady, E., & Belnap, J. (2016). Patterns and controls on nitrogen cycling of biological soil crusts, In Biological soil crusts: an organizing principle in drylands. Springer, Cham, 226, 257-285.
Barinova, S. (2017). How to Align and Unify the Cell Counting of Organisms for Bioindication. Environmental Sciences and Natural Resources, 2(2),1-4. https://doi: 10.19080/IJESNR.2017.02.555585
Belnap, J., Prasse, R., & Harper, K. (2001). Influence of biological soil crusts on soil environments and vascular plants, Biological soil crusts: structure, function and management, Springer, 281-300.
Belnap, J., Wilcox, B.P., Van Scoyoc, M.W., & Phillips, S.L. (2013). Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology. 6(3), 474-482. https://doi.org/10.1002/eco.1281.
Bergey, D. H., Buchanan, R. E., & Gibbons, N. E. (1974). Bergeys Manual of Determinative Bacteriology. Williams and Wilkins Company, Baltimor, Maryland, 1246 p.
Bowker, M. A., Reed, S. C., Maestre, F. T., & Eldridge D. J. (2018). Biocrusts: The living skin of the earth. Plant and Soil, 429, 1-7. https://doi.org/10.1007/s11104-018-3735-1.
Bullard, J. E., Ockelford, A., Strong, C., & Aubault, H. (2018). Effects of cyanobacterial soil crusts on surface roughness and splash erosion. Journal of Geophysical Research: Biogeosciences, 123, 3697-3712. https://doi.org/10.1029/2018JG004726.
Cania, B., Vestergaard, G., Kublik, S., Kohne, J. M., Fischer, T., Albert, A., Winkler, B., & Schulz, S. (2020). Biological soil crusts from different soil substrates harbor distinct bacterial groups with the potential to produce exopolysaccharides and lipopolysaccharides. Microbial ecology, 79, 326-341. https://doi.org/10.1007/s00248-019-01415-6.
Canton, Y., Chamizo, S., Rodriguez-Caballero, E., Lazaro, R., Roncero-Ramos, B., Roman, J. R., & Sole-Benet, A. (2020). Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance. Water, 12(3),720: 1-24. https://doi.org/10.3390/w12030720.
Cappuccino, J. G., & Sherman, N. (2007). Microbiology: A Laboratory Manual. Dorling Kindersley Pvt. Ltd, License of Pearson Education, New Delhi, India,143–193.
Chamizo, S., Canton, Y., Miralles, I., & Domingo, F. (2012). Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49(1), 96-105. https://doi.org/10.1016/j.soilbio.2012.02.017.
Chamizo, S., Adessi, A., Certini, G., & De Philippis, R. (2020). Cyanobacteria inoculation as a potential tool for stabilization of burned soils. Restoration Ecology, 28, S106-S114. https://doi.org/10.1111/rec.13092.
Chaudhry, S., Luhach, J., Sharma, V., & Sharma, Ch. (2012). Assessment of diesel degrading potential of fungal isolates from sludge contaminated soil of petroleum refinery, Haryana. Microbiology, 7(3), 182-190. https://scialert.net/abstract/?doi=jm.2012.182.190.
Chen, Q., He, Y., & Zhang, Z. (2022). Effects of diesel contamination on geotechnical properties of granitic residual soil. Arabian Journal of Geosciences, 15(17), 1474. https://doi.org/10.1007/s12517-022-10756-5.
Daryaee, R., Moosavi, A.A., ghasemi, R., & Riazi, M. (2021).  Effect of Petroleum Products on the Strength of Calcareous Soils. Iranian Journal of Soil and Water Research, 52(10), 2607-2621. doi: 10.22059/ijswr.2021.329800.669061.(In Persian).
Deng, J., Orner, E.P., Chau, J.F.,Anderson, E.M., Kadilak, A.L.,Rubinstein, R.L., Bouchillon, G.M.,Goodwin, R.A., Gage, D.J., & Shor,L.M. (2015). Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry. 83, 116-124. https://doi.org/10.1016/j.soilbio.2014.12.006.
Devatha, C. P., Vishnu Vishal, A., & Purna Chandra Rao, J. (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Applied Water Science, 9(4),1-10. https://doi.org/10.1007/s13201-019-0970-4.
Ehlers, K., Bunemann, E. K., Oberson A., Frossard E., Frostegard A., Yuejian M., & Bakken L. R. (2008). Extraction of Soil bacteria from a Ferralsol. Soil Biology and Biochemistry,40,1940-1946. https://doi.org/10.1016/j.soilbio.2008.04.005.
Elinskiy, V. I., Akmedov, R. M., & Ivanova, Y. A. (2020). The problem of environmental pollution in oil production: Topical issue. Vestn. Moscow Univ. Minist. Intern. Aff. Russ,118-122.
Ershad, D. (2009). Fungi of Iran. Iranian Research Institute of Plant Protection, Tehran, 531p.
Falciglia, P. P., & Vagliasindi, F. G. A. (2015). Remediation of hydrocarbon polluted soils using2.45 GHz frequency-heating: Influence of operating power and soil texture on soil temperature profiles and contaminant removal kinetics. Geochemical Exploration,151,66-73. https://doi.org/10.1016/j.gexplo.2015.01.007.
Fall, A. F., Nakabonge, G., Ssekandi, J., Founoune-Mboup, H., Apori, S. O., Ndiaye, A., Badji, A., & Ngom, K. (2022). Roles of Arbuscular mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical and Biological Properties of the Soil. Front. Fungal Biology, 3, 723892. https://doi.org/10.3389/ffunb.2022.723892.
Ferreira, R.V., Serpa, D., Cerqueira, M.A., & Keizer, J.J. (2016). Short-time phosphorus losses by overland flow in burnt pine and eucalypt plantations in north-central Portugal: A study at micro-plot scale. Science of the Total Environmen, 551, 631-639. https://doi.org/10.1016/j.scitotenv.2016.02.036.
Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47-52. https://doi.org/10.1016/j.catena.2009.08.009.
Galitskaya, P., Biktasheva, L., Blagodatsky, S., & Selivanovskaya, S. (2021). Response of bacterial and fungal communities to high petroleum pollution in different soils. Scientific Reports, 11(1),1-18. https://doi.org/10.1038/s41598-020-80631-4.
Gams, W., Verkley, G. J. M., & Crous, P. W. (2007). CBS Course of Mycology (5th ed). Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands, 242 p.
Garbeva, P., Tyc, O., Remus-Emsermann, M. N. P., Van der Wal, A., Vos, M., Silby, M., & De Boer, W. (2011). No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescen Pf0-1. PLoS ONE, 6(11), e27266. https://doi.org/10.1371/journal.pone.0027266.
Garrity, G. M., Boone, D. R., & Castenholz, R. W. (2001). Bergey’s Manual of Systematic Bacteriology, second ed, New York, USA,1: 173.
Gharemahmudli, S., Najafinejad, A., Sadeghi, S.H.R., Zarei Darki, B. Mohammadian Behbahani, A., & Kheirfam, H. (2020). Reducing Surface Runoff from Soils Subjected to a Freezing-Thawing Cycle using Soil Cyanobacteria. Water and Soil Conservation, 27(3), 163-180. doi: 10.22069/jwsc.2020.17693.3318. (In Persian).
Gupta, A., Mishra, P., Pandey, C., Singh, U., Sahu, C., & Keshri, A. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67-72. https://doi: 10.4103/aca.ACA_157_18.
Havrilla, C., Leslie, A.D., Di Biase, J.L., & Barger, N.N. (2020). Biocrusts are associated with increased plant biomass and nutrition at seedling stage independently of root-associated fungal colonization. Plant and Soil, 446, 331-342. https://doi.org/10.1007/s11104-019-04306-4.
Jafarpoor, A., Sadeghi, S. H. R., Zarei Darki, B., & Homaee, M. (2022a). Changes in hydrologic components from a mid-sized plots induced by rill erosion due to cyanobacterization, Soil and Water Conservation Research, 10(1), 143-148. https://doi.org/10.1016/j.iswcr.2021.05.002.
Jafarpoor, A., Sadeghi, S. H., Darki, B. Z., & Homaee, M. (2022b). Changes in morphologic, hydraulic, and hydrodynamic properties of rill erosion due to surface inoculation of endemic soil cyanobacteria. Catena, 208, 105782. https://doi.org/10.1016/j.catena.2021.105782.
Khaledi Darvishan, A., Sadeghi, S. H. R., Homaee, M., & Arabkhedri, M. (2014). Measuring sheet erosion using synthetic color‐contrast aggregates. Hydrological Processes, 28(15), 4463-4471. https://doi.org/10.1002/hyp.9956.
Kheirfam, H., Sadeghi, S. H. R., Zarei Darki, B., & Homaee, M. (2017a). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152, 40-46. https://doi.org/10.1016/j.catena.2017.01.006.
Kheirfam, H., Sadeghi, S. H. R., Homaee, M., & Zarei-Darki, B. (2017b). Quality improvement of an erosion-prone soil through microbial enrichment. Soil and Tillage Research,165, 230-238. https://doi.org/10.1016/j.still.2016.08.021.
Kheirfam, H., Homaee, M., Sadeghi, S.H.R., & Zarei Darki, B. (2017c). Role of Biological Soil Crusts Enrichment through Bacteria Inoculation and Stimulation of Nitrogen Increasing in an Erosion-Prone Soil. Water and Soil, 31(2), 545-556. doi: 10.22067/jsw.v31i2.54598.(In Persian).
Kheirfam, H., Sadeghi, S.H.R., Zarei Darki, B., & Homaee, M. (2018). Reducing soil and water loss through stimulation of soil bacteria in experimental small plots. Water and Soil Conservation, 25(4): 243-257. doi: 10.22069/jwsc.2018.14361.2910.(In Persian).
Kheirfam, H., Sadeghi, S. H. R., & Zarei Darki, B. (2020). Soil conservation in an abandoned agricultural rain-fed land through inoculation of cyanobacteria. Catena, 187, 104341. https://doi.org/10.1016/j.catena.2019.104341.
Komarek, J., & Anagnostidis, K. (1999). Süsswasserflora von Mitteleuropa Bd. 19/1: Cyanoprokaryota: Teil/Part 1: Chroococcales. Spektrum Akademischer Verlag. In German,548p.
Koolivand, A., Abtahi, H., Godini, K., Saeedi, R., Rajaei, M. S., & Parhamfar, M. (2019). Biodegradation of oil tank bottom sludge using a new two-phase composting process: Kinetics and effect of different bulking agents. Material Cycles and Waste Management, 21(6), 1280-1290. https://doi.org/10.1007/s10163-019-00881-x.
Li, X. R., Zhang, P., Su, Y. G., & Jia, R. L. (2012). Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study.Catena, 97, 119-126. https://doi.org/10.1016/j.catena.2012.05.009.
Lutton, E., Schellevisa, R., & Shanmuganathan, A. (2013). Culture-dependent methods increase observed soil bacterial diversity from Marcellus shale temperate forest in Pennsylvania. student Research, 2(1), 9-16. https://doi.org/10.47611/jsr.v2i1.110.
Miralles, I., Trasar-Cepeda, C., Leiros, M. C., & Gil-Sotres, F. (2013). Labile carbon in biological soil crusts in the Tabernas desert, SE Spain. Soil Biology and Biochemistry, 5,1-8. https://doi.org/10.1016/j.soilbio.2012.11.010.
Mohammadi, S., Homaee, M., & Sadeghi, S.H.R., (2015). Runoff Generation in Kerosene and Gas Oil Contaminated Soils. Iranian Journal of Soil and Water Research, 46(1): 121-131. doi: 10.22059/ijswr.2015.54301.(In Persian).
Mohammadi, S., Homaee, M., & Sadeghi, S. H. R. (2018). Runoff and sediment behavior from soil plots contaminated with kerosene and gasoil. Soil and Tillage Research, 182, 1-9. https://doi.org/10.1016/j.still.2018.04.015.
Mohsenzadeh, F., Zafar, D., & Noorisafa, B. (2016). Adaptation of some fungal species of Trichoderma to petroleum, Cellular and Molecular Researches (Iranian Journal of Biology), 29(3), 321-330.(In Persian).
Muller, K., Mason, K., Strozzi, A. G., Simpson, R., Komatsu, T., Kawamoto, K., & Clothier, B. (2019). Runoff and nutrient loss from a water-repellent soil. Geoderma, 322, 28-37. https://doi.org/10.1016/j.geoderma.2018.02.019.
Norozpour, M., Sarikhani, M.R., & Aliasgharzad, N. (2023). Monitoring of soil respiration changes in a heavy naphtha-contaminated sandy loam soil under different bioremediation treatments. Water and Soil Science, doi:10.22034/WS.2021.47654.2436. doi: 10.22034/ws.2021.47654.2436.(In Persian).
Rathod, V.P., Parekh, H. H., Rajpura, P. D., Shah, M. V., Singh, Sh. R., Panchal, R. R., & Upadhy, V. J. (2022). Effect of bioremediation technique on engineering properties of crude oil-contaminated soil. Biocatalysis and Agricultural Biotechnology, 43, 102393. https://doi.org/10.1016/j.bcab.2022.102393.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics2(1), 21-33.
Ritz, K., & Young, I. M. (2004). Interactions between soil structure and fungi. Mycologist, 18(2),52-59. https://doi.org/10.1017/S0269915X04002010.
Rodríguez-Caballero, E., Canton, Y., Chamizo, S., Lazaro, R., & Escudero, A. (2013). Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, microtopography and hydrological drivers. Ecosystems, 16(4), 529-546. https://doi.org/10.1007/s10021-012-9626-z.
Roman, J. R., Roncero-Ramos, B., Rodríguez-Caballero, E., Chamizo, S., & Canton, Y. (2021). Effect of water availability on induced cyanobacterial biocrust development. Catena,197,104988. https://doi.org/10.1016/j.catena.2020.104988.
Rossi, F., Mugnai, G., & Philippis, R.D. (2017). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 1-16
Rossi, F., Mugnai, G., & De Philippis, R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 429, 19-34. https://doi.org/10.1007/s11104-017-3441-4.
Sadeghi, S. H. R., Abdollahi, Z., & Khaledi Darvishan, A. (2013). Experimental comparison of some techniques for estimating natural rain drop size distribution in southern coast of Caspian Sea, Iran. Hydrological Sciences. 58(6), 1374-1382. https://doi.org/10.1080/02626667.2013.814917.
Sadeghi, S.H.R., Kheirfam, H., Homaee, M., & Zarei Darki, B. (2017a). Improvability of Water Infiltration in an Erosion-Prone Soils under Laboratorial Conditions through Artificial Increasing of Soil Microorganisms Population.  Iranian Journal of Soil and Water Research,47(4), 797-805. i: 10.22059/ijswr.2016.59986.(In Persian).
Sadeghi, S. H. R., Kheirfam, H., Homaee, M., Zarei Darki, B., & Vafakhah, M. (2017b). Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil and Tillage Research, 171, 35-41. https://doi.org/10.1016/j.still.2017.04.007.
Sadeghi, S.H.R., Jafarpoor, A., Zabihi Silabi, M., Molashahi, Sh., Naghdi, M., Sharifi Moghani, M., Ghysoori, Z., & Farzadfar, E. (2021a). Biologic Management Framework of Soil Erosion in the Watershed (Applied study: Oshnavieh Galazchai, West Azerbaijan, Iran). Iranian Journal of Soil and Water Research, 52(4), 997-1010. doi: 10.22059/ijswr.2021.317114.668871.(In Persian).
Sadeghi, S. H. R., Najafinejad, A., Gharemahmudli, S., Zarei Darki, B., Behbahani, A. M., & Kheirfam, H. (2021b). Reduction in soil loss caused by a freeze-thaw cycle through inoculation of endemic soil microorganisms. Applied Soil Ecology, 157, 103770. https://doi.org/10.1016/j.apsoil.2020.103770.
Sadeghi, S. H., Jafarpoor, A., Homaee, M., & Darki, B. Z. (2023). Changeability of rill erosion properties due to microorganism inoculation. Catena, 223, 106956. https://doi.org/10.1016/j.catena.2023.106956.
Safehian, H., Rajabi, A. M., & Ghasemzadeh, H. (2018). Effect of diesel-contamination on geotechnical properties of illite soil. Engineering Geology, 241, 55-63. https://doi.org/10.1016/j.enggeo.2018.04.020.
Salmazo, P., De Marco, N., Soeiro, V. S., Castanho, N. R. C. M., Leite, F. G., Chaud, M. V., Grotto, D., & Jozala, A. F. (2023). Evaluation of Bacillus subtilis as a tool for biodegrading diesel oil and gasoline in experimentally contaminated water and soil. Current Microbiology, 80(3), 94. https://doi.org/10.1007/s00284-022-03175-y.
Schrey, S. D., Erkenbrack, E., Früh, E., Fengler, S., Hommel, K., Horlacher, N., Schulz, D., Ecke, M., Kulik, A., Fiedler, H. P., Hampp, R., & Tarkka, M. T. (2012). Production of fungal and bacterial growthmodulating secondary metabolites is widespreadamong mycorrhiza-associated streptomycetes, BMC Microbiology, 12: 164. https://doi.org/10.1186/1471-2180-12-164.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4): 591-611. https://doi.org/10.2307/2333709.
Sharma, R., Singh, G., & Sharma, V.K. (2011). Comparison of different media formulation on growth, morphology and chlorophyll content of green alga, Chlorella vulgaris. International Journal of Pharma and Bio Sciences, 2(2), 509-516.
Sileshi, G., & Mafongoya, P.L. (2006). Long-term effect of improved legume fallows on soil invertebrate macrofauna and maize yield in eastern Zambia. Agriculture Ecosystems and Environment, 115, 69-78. https://doi.org/10.1016/j.agee.2005.12.010.
Tiwari, O. N., Bhunia, B., Mondal, A., Gopikrishna, K., & Indrama, T. (2019). System metabolic engineering of exopolysaccharide-producing cyanobacteria in soil rehabilitation by inducing the formation of biological soil crusts: A review. Cleaner Production,211,70-82. https://doi.org/10.1016/j.jclepro.2018.11.188.
Tucker, C. L., McHugh, T. A., Howell, A., Gill, R., Weber, B., Belnap, J., Grote, E., & Reed, S. C. (2017). The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry, 135, 239-249. https://doi.org/10.1007/s10533-017-0372-3. 
Varjani, S.J., & Upasani, V.N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegradation, 120(1), 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006.
Vieira, F. C. S., & Nahas, E. (2005). Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research, 160(2), 197-202. https://doi.org/10.1016/j.micres.2005.01.004.
Zarei Dark, B., Seyfabadi, J., & Fayazi, S. (2017). Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Agriculture, Agribusiness and Biotechnology, (60), e17160304. https://doi.org/10.1590/1678-4324-2017160304
Zhao, Y., & Xu, M. (2013). Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies. Hydrologic Engineering, 18(4), 387-393. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000633.