برآورد شاخص سطح برگ ذرت علوفه‌ای با استفاده از شاخص‌های گیاهی مستخرج از تصاویر ماهواره-ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران

چکیده

 
شاخص سطح برگ پارامتر مهمی در کنترل فرآیندهای مختلف بین اتمسفر- گیاه- خاک بوده و به دلیل اهمیت آن در مدلسازی­های مختلف، اندازه­گیری سریع آن در مقیاس­های مختلف همواره مورد توجه بوده است. استفاده از شاخص­های گیاهی(VIs)  از روش­های مرسوم تخمین شاخص سطح برگ بوده و هریک از این شاخص­ها حساسیت­های متفاوتی در مقادیر مختلف شاخص سطح برگ در طول دوره رشد گیاه از خود نشان می­دهند. هدف این مطالعه برآورد شاخص سطح برگ با استفاده از شاخص­های گیاهی تفاضلی نرمال شده (NDVI)، گیاهی تفاضل (DVI)، تفاوت وزن (WDVI)، شاخص گیاهی تعدیل شده خاک (SAVI)، تفاضلی نرمال شده سبز (NDVIg)، تفاضلی نرمال شده آب (NDWI)، شاخص گیاهی تعدیل شده خاک بهینه (OSAVI)، پوشش گیاهی ارتقاء یافته (EVI)، شاخص طیف گسترده پویا (WDRVI) و گیاهی تفاضلی سبز (GDVI) و مقایسه با مقادیر میدانی شاخص سطح برگ در طول دوره رشد گیاه ذرت علوفه­ای تحت تراکم کشت­های مختلف و کاربرد مالچ کاه و کلش طی فصل رشد 1399 در کرج بود. بر اساس نتایج به دست آمده حساسیت شاخص­های گیاهی به شاخص سطح برگ در مراحل مختلف رشد یکسان نبوده و شاخص­هایی مانند DVI، WDVI و GDVI در مراحل اولیه رشد و شاخص­های NDVIg، NDWI و EVI در مراحل میانی رشد از حساسیت بالایی در برآورد شاخص سطح برگ از خود نشان دادند و در نهایت شاخص­ OSAVI بر اساس معیارهای R2، RMSE و متوسط نویز معادل (NE) به ترتیب معادل 91/0، 98/0 مترمربع بر مترمربع و 8/1 به عنوان شاخص برتر در برآورد شاخص سطح برگ معرفی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Leaf Area Index of Maize by Vegetation Indices Extracted from Satellite Imaging

نویسندگان [English]

  • saeid jalili 1
  • Masoud Parsinejad 1
  • Peyman Daneshkar Arasteh 2
1 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Water Engineering, Faculty of Agriculture & Natural Recourses, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Leaf area index is an important parameter in controlling different processes between atmosphere-plant-soil and due to its importance in various modeling, its rapid measurement at different scales has been considered. The use of vegetation indices (VIs) is one of the common methods for estimation leaf area index and each of these indices shows different sensitivities in various values of leaf area index during plant growth period. The aim of this study was to estimate leaf area index using Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Weighted Difference Vegetation Index (WDVI), Soil Adjusted Vegetation Index (SAVI), Green Normalized Difference Vegetation Index (NDVIg), Normalized Difference Water Index (NDWI), Optimized Soil Adjusted Vegetation Index (OSAVI), Enhanced Vegetation Index (EVI), Wide Dynamic Range Vegetation Index (WDRVI) and Green Difference Vegetation Index (GDVI) and comparison with measured leaf area index during the growth period of maize under different crop densities and the application straw mulching during 2020 growing season in the Karaj. Based on the results, the sensitivity of vegetation indices to leaf area index weren't same at different growth stage and indices such as DVI, WDVI and GDVI at the initial growth stage and NDVIg, NDWI and EVI at the mid growth stage showed high sensivity to estimation of leaf area index. Finally, OSAVI index With R2, RMSE and average noise equivalent (NE) of 0.91, 0.98 (m2/m2) and 1.8, respectively, considered as the best index for leaf area index estimation.

کلیدواژه‌ها [English]

  • leaf area index
  • Landsat 8
  • maize
  • OSAVI
  • vegetation indices
Anderson, M. C., Neale, C. M. U., Li, F., Norman, J. M., Kustas, W. P., Javanthi, H and Chavez, J. (2004). Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sensing of Enviroment, 92, 447-464.
Asad, M. H. and Bais, A. (2020). Crop and weed leaf area index mapping using multi-source remote and proximal sensing.  IEEE Access, 8, 138179- 138190.
Baghzouz, M., Devitt, D. A., Fenstermaker, L. and Young, M. H. (2010). Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sensing, 2, 990–1013.
Baret, F. and Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 161–173.
Bonan, G. B. (1993). Importance of leaf-area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment, 43, 303–314.
Bréda, N. J. J. (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54 (392), 2403–2417.
Broge, N. and Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.
Carricondo, C. A., Di Mauro, F., de Beeck, M. O., Roland, M., Gielen, B., Vitale, D., Ceulemans, R. and Papale, D. (2019). A comparison of di_erent methods for assessing leaf area index in four canopy types. Central European Forestry Journal, 65, 67–80.
Chen, Z., Sun, S., Zhu, Z., Jiang, H. and Zhang, X. (2019). Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach. Agricultural Water Management, 225, 105765.
Clevers, J. G. P. W. (1988). The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment, 25(1), 53–69.
Cowling, S. A., and Field, C. B. (2003). Environmental control of leaf area production: Implications for vegetation and land-surface modeling. Global Biogeochemical Cycles, 17(1), 1-14.
Das, B., Sahoo, R. N., Pargal, S., Krishna, G., Verma, R., Viswanathan, C., Sehgal, V. K. and Gupta, V. K. (2020). Comparative analysis of index and chemometric techniques based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands. Geocarto International, 35, 1415- 1432.
Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y. and Simmons, C. T. (2017). A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resources Research, 53, 4965–4983.
Fern, R. R., Foxley, E.A., Bruno, A. and Morrison, M. L. (2018). Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecological Indicators, 94, 16–21.
Gao, B. C. (1996). NDWI- A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257- 266.
Gitelson, A. A., and Merzlyak, M. N. (1994). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves: Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143, 286–292.
Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G. and Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letter, 30 (5), 1-4.
Govaerts, Y. M., Verstraete, M. M., Pinty, B. and Gobron, N. (1999). Designing optimal spectral indices: a feasibility and proof of concept study. International Journal of Remote Sensing, 20 (9), 1853–1873.
Gu, Z., Sanchez-Azofeifa, A., Feng, J. and Cao, S. (2015). Predictability of leaf area index using vegetation indices from multiangular CHRIS/PROBA data over eastern China. Journal of Applied Remote Sensing, 9(1), 096085.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. and Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337-352.
Hansen, P. and Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86, 542–553.
He, L., Zhang, H. Y., Zhang, Y. S., Song, X., Feng, W., Kang, G. Z., Wang, C. Y. and Guo, T. (2016). Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73, 170–185.
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25 (3), 295–309.
Huete, A., Justice, C. and van-Leeuwen, W. (1996). MODIS vegetation index (MOD13), EOS MODIS algorithm; theoretical basis document; NASA Goddard Space Flight Center: Greenbelt, MD, USA.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sensing of Environment, 83(1-2), 195–213.
Li, S., Li., Y., Lin, H., Feng, H. and Dyck, M. (2017). Effects of different mulching technologies on evapotranspiration andsummer maize growth. Agricultural Water Management, 201, 309-318.
Liu, J., Pattey, E. and Jego, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358.
Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D. and Zhou, Y. (2018). Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sensing of Environment, 206, 174–188.
Mannschatz, T., Pflug, B., Borg, E., Feger, K. H. and Dietrich, P. (2014). Uncertainties of LAI estimation from satellite imaging due to atmospheric correction. Remote Sensing of Environment, 153, 24- 39.
Martens, S. N., Ustin, S. L. and Rousseau, R.A. (1993). Estimation of tree canopy leaf area index by gap fraction analysis. Forest Ecology and Management. 61, 91–108.
Mokhtari, A., Noory, H. and Vazifedoust, M. (2018). Improving crop yield estimation by assimilating LAI and inputting satellitebased surface incoming solar radiation into SWAP model. Agricultural and Forest Meteorology, 250–251, 159–170.
Moulin, S. and Guerif, M. (1999). Impacts of model parameter uncertainties on crop reflectance estimates: A regional case study on wheat. International Journal of Remote Sensing, 20, 213–218.
Mourad, R., Jaafar, H., Anderson, M. and Gao, F. (2020). Assessment of Leaf Area Index Models Using Harmonized Landsat and Sentinel-2 Surface Reflectance Data over a Semi-Arid Irrigated Landscape. Remote Sensing, 12(19), 3121.
Nguy-Robertson, A. L., Gitelson, A., Peng, Y., Vina, A., Arkebauer, T. and Rundquist, D. (2012).  Green leaf area index estimation in maize and soybean: combining vegetation indices to achieve maximal sensitivity. Agronomy Journal, 104(5), 1336- 1347.
Nguy-Robertson, A. L. and Gitelson, A. A. (2015). Algorithms for estimating green leaf area index in C3 and C4 crops for MODIS, Landsat TM/ETM+, MERIS, Sentinel MSI/OLCI, and Venμs sensors. Remote Sensing Letters, 6(5), 360- 369.
Rondeaux, G., Steven, M. and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107.
Rouse, R. J., Haas, R. H., Schell, J. A. and Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS, NASA special publication, 351, 0- 309.
Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324 (5923), 81–85.
Sripada, R., Heiniger, R. W., White, J. G. and Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98, 968–977.
Thorp, K. R. and Tian, L. F. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5, 477–508.
Tucker, C. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8; 127–150.
Vina, A., Gitelson, A. A., Nguy-Robertson, A. L. and Peng, Y. (2011). Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115, 3468–3478.
Wang, S. X., Wang, Z. J., Zuo, Z. and Guo, Y. Z. (2004). Effects of difference mulching on the soil environment and maize yield in rain fed land. Journal of Arid Land Resources & Environment, 18(9), 134–137.
Wang, R., He, N., Li, S., Xu, L. and Li, M. (2021). Spatial variation and mechanisms of leaf water content in grassland plants at the biome scale: Evidence from three comparative transects. Scientific Reports, 11, 9281.
Xiao, Z. Q., Liang, S. L., Wang, J. D., Chen, P., Yin, X. J., Zhang, L. Q. and Song, J. L. (2014). Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209–223.
Zarate-Valdez, J. L., Whiting, M. L., Lampinen, B. D., Metcalf, S., Ustin, S. L. and Brown, P. H. (2012). Prediction of leaf area index in almonds by vegetation indexes. Computers and Electronics in Agriculture, 85, 24–32.
Zhang, Y., Yang, J., Liu, X., Du, L., Shi, S., Sun, J. and Chen, B. (2020). Estimation of multi-species leaf area index based on chinese GF-1 satellite data using look-up table and gaussian process regression methods. Sensors, 20(9), 2460.
Zheng, J., Fan, J., Zhang, F., Yan, S., Guo, J., Chen, D. and Li, Z. (2018). Mulching mode and planting density affect canopy interception loss of rainfall and water use efficiency of dryland maize on the Loess Plateau of China. Journal of Arid Land, 10(5), 794- 808.