بررسی اثرات فرایندهای پیرولیز آهسته و کربونیزاسیون هیدروترمال بر خصوصیات تثبیت‌کنندگی میوه سرو به‌منظور غیر متحرک سازی نیکل در یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در مطالعه حاضر به بررسی اثرات کاربرد بیوچار (تولید شده از فرایند پیرولیز آهسته) و هیدروچار (تولید شده از فرایند کربونیزاسیون هیدروترمال) میوه سرو بر تثبیت نیکل در یک خاک آلوده به این عنصر پرداخته شد. بدین منظور، میوه سرو خام و بیوچار و هیدروچار حاصل از آن به‌صورت جداگانه در سطوح 5/1 و 3% (وزنی/وزنی) به یک خاک آهکی آلوده به نیکل (350 میلی‌گرم/ کیلوگرم) اضافه و پس از خوابانیدن 3 ماهه، تحت شرایط رطوبت ظرفیت زراعی، سینتیک واجذبی و شکل‌های شیمیایی نیکل در آزمایشگاه گروه محیط زیست، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان (سال 1399)، اندازه‌گیری و مورد بررسی قرار گرفت. بر اساس نتایج، هیدروچار دارای سطح ویژه بالاتر، گروه‌های عامل حاوی اکسیژن فعال بیشتر و مورفولوژی خلل و فرج نامنظم‌تری در مقایسه با بیوچار بود. بررسی مقادیر نیکل واجذب شده نهایی در خاک‌های تیمار شده نشان از کاهش 27-37 % و 11-5/16% نیکل واجذب شده، به ترتیب در نمونه‌های هیدروچار و بیوچار میوه سرو خام در مقایسه با نمونه شاهد داشت. برازش مدل دو مرحله‌ای مرتبه اول بر داده‌های واجذبی نیکل در همه نمونه‌های تیمار شده، حاکی از دقت بالای این مدل (ضریب تبیین > 99%)، در پیش بینی مقادیر واجذبی نیکل داشت. ارزیابی فاکتور تحرک نیکل بدست آمده از مقادیر شکل‌های شیمیایی نشان از کاهش فاکتور تحرک در نمونه ‌خاک‌های تیمار شده با هیدروچار (2/29- 2/30 %) و بیوچار (9/31- 3/33 %) در مقایسه با نمونه خاک شاهد (8/38 %) داشت. به طور کلی، وجود گروه‌های عامل حاوی اکسیژن فعال و سطح ویژه بیشتر هیدروچار در مقایسه با بیوچار، سبب تثبیت بیشتر از نیکل در خاک در مقایسه با بیوچار شده است که با توجه به هزینه تولید کمتر و کاهش تولیدگازهای گلخانه‌ای مخرب در تولید هیدروچار، نسبت به بیوچار، لزوم توجه بیشتر به کاربرد هیدروچار و هیدروچارهای مهندسی شده در مطالعات آتی تثبیت عناصر سنگین در محیط خاک را طلب می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of slow pyrolysis and hydrothermal carbonization processes effects on the stabilizing properties of cypress cones in order to stabilize nickel in a calcareous soil

نویسندگان [English]

  • Mahboub Saffari
  • Masomeh Moazallahi
Environment Department, Institute of Science and High Technology and Environmental Sciences, GraduateUniversity of Advanced Technology, Kerman, Iran.
چکیده [English]

In the present study, the effects of biochar (produced by slow pyrolysis process) and hydrochar (produced by hydrothermal carbonization process) of cypress cones application on nickel (Ni) stabilization in a soil spiked with this element were investigated. For this purpose, the raw cypress cone and its biochar and hydrochar are added separately at 1.5 and 3% (w/w) to a Ni-spiked calcareous soil (350 mg kg-1) and after 3 months of incubation process, under field capacity moisture condition, desorption kinetics and chemical forms of Ni, in the laboratory of environment department, graduate university of advanced technology, Kerman (2020), were measured and investigated. According to the results, hydrochar had higher specific surface area and functional groups containing reactive oxygen, as well as more irregular porosity morphology compared to biochar. The values ​​of final desorbed Ni in the treated soils showed a decrease of 27-37% and 11-16.5% of desorbed Ni in the soil treated with hydrochar and biochar, respectively, compared to the control sample. The fitness of the two first-order reaction model on Ni desorption data in all treated samples showed the high accuracy of this model (coefficient of determination>99%) in predicting Ni desorption. Evaluation of Ni mobility factor obtained from the Ni chemical forms shows a decrease in this factor in samples of soils treated with hydrochar (29.2-30.2%) and biochar (31.9-33.3%) in comparison with control soil sample (38.8%). In general, the presence of functional groups containing reactive oxygen and higher specific surface area of ​​hydrochar compared to biochar has resulted in more stabilization of Ni in the soil compared to treated soils with biochar. Due to lower production costs and reduced production of destructive greenhouse gases in hydrochar production compared to biochar, the need for more attention to hydrochar and engineered hydrochar application is required in future studies of heavy metals stabilization in the soil environment.

کلیدواژه‌ها [English]

  • Biochar
  • Chemical forms
  • Desorption kinetics
  • Heavy metals
  • Hydrochar
Benavente, V., Calabuig, E., & Fullana, A. (2015). Upgrading of moist agro-industrial wastes by hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis113, 89-98.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464-465.
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology107, 419-428.
Cao, X., Ro, K. S., Chappell, M., Li, Y., & Mao, J. (2011). Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Energy & Fuels25(1), 388-397.
Chen, Z., Ma, L., Li, S., Geng, J., Song, Q., Liu, J., ... & Li, S. (2011). Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air. Applied Surface Science257(20), 8686-8691.
Deng, J., Li, X., Wei, X., Liu, Y., Liang, J., Song, B., ... & Huang, W. (2020). Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Co-adsorption and mechanism. Chemical Engineering Journal387, 124097.
Elaigwu, S. E., Rocher, V., Kyriakou, G., & Greenway, G. M. (2014). Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell. Journal of Industrial and Engineering Chemistry20(5), 3467-3473.
Fei, Y. H., Zhao, D., Liu, Y., Zhang, W., Tang, Y. Y., Huang, X., ... & Liu, C. (2019). Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd). Chemosphere236, 124841.
Fuertes, A. B., Arbestain, M. C., Sevilla, M., Maciá-Agulló, J. A., Fiol, S., López, R., ... & Macìas, F. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Research48(7), 618-626.
Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2020). Nickel: Human health and environmental toxicology. International Journal of Environmental Research and Public Health17(3), 679.
Guerrero, M., Ruiz, M. P., Alzueta, M. U., Bilbao, R., & Millera, A. (2005). Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity. Journal of Analytical and Applied Pyrolysis74(1-2), 307-314.
Guiotoku, M., Rambo, C. R., Hansel, F. A., Magalhães, W. L. E., & Hotza, D. (2009). Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Materials Letters63(30), 2707-2709.
Han, L., Ro, K. S., Sun, K., Sun, H., Wang, Z., Libra, J. A., & Xing, B. (2016). New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environmental Science & Technology50(24), 13274-13282.
Hannan, F., Huang, Q., Farooq, M. A., Ayyaz, A., Ma, J., Zhang, N., ... & Islam, F. (2021). Organic and inorganic amendments for the remediation of nickel contaminated soil and its improvement on Brassica napus growth and oxidative defense. Journal of Hazardous Materials416, 125921.
Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M., & Khan, T. A. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research26(13), 12673-12688.
He, H., Zhang, N., Chen, N., Lei, Z., Shimizu, K., & Zhang, Z. (2019). Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk. Bioresource Technology Reports8, 100348.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology44(4), 1247-1253.
Khan, T. A., Saud, A. S., Jamari, S. S., Ab Rahim, M. H., Park, J. W., & Kim, H. J. (2019). Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass and Bioenergy130, 105384.
Krylova, A. Y., & Zaitchenko, V. M. (2018). Hydrothermal carbonization of biomass: a review. Solid Fuel Chemistry52(2), 91-103.
Kumar, S., Loganathan, V. A., Gupta, R. B., & Barnett, M. O. (2011). An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal of Environmental Management92(10), 2504-2512.
Li, B., Guo, J. Z., Liu, J. L., Fang, L., Lv, J. Q., & Lv, K. (2020). Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. Science of The Total Environment714, 136897.
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal28(4), 380-394.
Li, F., Zimmerman, A. R., Zheng, Y., Yang, Y., Huang, J., Zhang, Y., ... & Gao, B. (2021). P-enriched hydrochar for soil remediation: Synthesis, characterization, and lead stabilization. Science of the Total Environment783, 146983.
Li, Y., Tsend, N., Li, T., Liu, H., Yang, R., Gai, X., ... & Shan, S. (2019). Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresource Technology273, 136-143.
Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., ... & Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels2(1), 71-106.
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal42(3), 421-428.
Liu, Z., Zhang, F. S., & Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel89(2), 510-514.
Liu, Z., Zhang, F. S., & Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel89(2), 510-514.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis. Part3, 437-474.
Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In Environmental Biotechnology: For sustainable future (pp. 103-125). Springer, Singapore.
Mohan, D., Pittman Jr, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., ... & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science310(1), 57-73.
Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma163(3-4), 247-255.
Naseer, A., Jamshaid, A., Hamid, A., Muhammad, N., Ghauri, M., Iqbal, J., ... & Shah, N. S. (2019). Lignin and lignin based materials for the removal of heavy metals from waste water-an overview. Zeitschrift für Physikalische Chemie233(3), 315-345.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods5, 961-1010.
Ramola, S., Mishra, T., Rana, G., & Srivastava, R. K. (2014). Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Environmental Monitoring and Assessment186(12), 9023-9039.
Reza, M. T., Lynam, J. G., Uddin, M. H., & Coronella, C. J. (2013). Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy49, 86-94.
Reza, M. T., Rottler, E., Herklotz, L., & Wirth, B. (2015). Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresource Technology182, 336-344.
Saffari, M. (2018). Response surface methodological approach for optimizing the removal of cadmium from aqueous solutions using pistachio residues biochar supported/non-supported by nanoscalezero-valent iron. Main Group Metal Chemistry41(5-6), 167-181.
Saffari, M. (2019). Evaluation of Cadmium Behavior in a Calcareous Soil as Affected by Walnut-Shell Residues Biochars Coated by Nanoscale Zero-Valent Iron. Iranian Journal of Soil and Water Research50(6), 1437-1451. (In Farsi)
Saffari, M., & Moazallahi, M. (2022). Nickel behavior as affected by various physical-chemical modified biochars of cypress cones in a calcareous nickel-spiked soil. Archives of Agronomy and Soil Science, 1-18.
Saffari, M., Karimian, N., Ronaghi, A., Yasrebi, J., & Ghasemi-Fasaei, R. (2015). Stabilization of nickel in a contaminated calcareous soil amended with low-cost amendments. Journal of Soil Science and Plant Nutrition15(4), 896-913.
Saffari, M., Vahidi, H., & Moosavirad, S. M. (2020). Effects of pristine and engineered biochars of pistachio-shell residues on cadmium behavior in a cadmium-spiked calcareous soil. Archives of Agronomy and Soil Science66(7), 942-956.
Shaaban, A., Se, S. M., Mitan, N. M. M., & Dimin, M. F. (2013). Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering68, 365-371.
Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety142, 375-387.
Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel83(11-12), 1469-1482.
Singh, J. P., Karwasra, S. P. S., & Singh, M. (1988). Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India. Soil Science146(5), 359-366.
Sposito, G., Lund, L. J., & Chang, A. C. (1982). Trace metal chemistry in arid‐zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal46(2), 260-264.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods5, 1201-1229.
Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., ... & Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresource Technology212, 318-333.
Van Vinh, N., Zafar, M., Behera, S. K., & Park, H. S. (2015). Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International Journal of Environmental Science and Technology12(4), 1283-1294.
Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices2011.
Xia, Y., Liu, H., Guo, Y., Liu, Z., & Jiao, W. (2019). Immobilization of heavy metals in contaminated soils by modified hydrochar: Efficiency, risk assessment and potential mechanisms. Science of the Total Environment685, 1201-1208.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., & Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal200, 673-680.
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: a review. Energy171, 581-598.
Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., ... & Li, H. (2015). Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresource Technology176, 15-22.