نوع مقاله : مقاله پژوهشی
نویسندگان
1 علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران
2 استاد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 استاد،گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Given the changes in rainfall and temperature of the regions in recent decades due to global warming, it is necessary to study the temporal changes of sediment in rivers. In the present study, the changes of sediment entering the reservoir of Torogh dam under the influence of the climate change phenomenon were evaluated using the data of the base period (1980-2000) in the period 2076-2056. In this regard, the output of five climate models BCC-CSM-1-1, GFDL-ESM2M, IPSL-CS5A-IR, MICRO-ESM-CHEM, and MRI-CGCM3 and their group implementation under two emission scenarios RCP2.6 and RCP8.5. The IHACRES Rainfall-runoff model was used to simulate the inflow to the dam reservoir, and the sediment measurement curve was used to evaluate sediment changes. The results of flow simulation in the baseline period (1980-2000) indicated that the IHACRES model has a good ability to simulate monthly flow in the study basin. The results of reviewing different climate change scenarios showed that the amount of rainfall in the next period compared to the base period under the RCP2.6 scenario would increase by 7.25%, and under the RCP8.5 scenario will decrease by 1.24%. Both scenarios jointly predicted an upward trend for the average temperature. But the slope of this increase under the RCP8.5 scenario was greater than RCP2.6. The results showed that due to changes in Rainfall and temperature, the amount of discharge in the next period compared to the base period under the RCP2.6 scenario will increase by 13.63% and under the RCP8.5 scenario will decrease by -22.55%. Also, this study showed that the rate of annual changes in suspended sediment load to the Torgh Dam reservoir in the future period compared to the base period under RCP2.6 scenario will increase by 11.58 percent and under RCP8.5 scenario will decrease by -25.32 percent. Therefore, predicting the amount of sediment entering the dam reservoir is strongly a function of the scenario under study.
کلیدواژهها [English]