Abbasi. F. (2009). Assessment of Indirect Methods to Estimate Soil Hydraulic Properties for Simulating Soil Moisture in a Sandy Loam Soil. Journal of Agricultural Engineering Research, 9 (4), 31-44. (In Persian).
Abbasi, F., and Tajic, F. (2007). Simultaneous estimation of hydraulic parameters and solute transportation by inverse solution method at field scale. Journal of Science and Technology of Agriculture and Natural Resources, 11 (1): 111-122.
Abd Rashid, N.S., Askari, M., Tanaka, T., Simunek, J., and van Genuchten, M.Th. (2015). Inverse estimation of soil hydraulic properties under oil palm trees. Geoderma, 241–242, 306–312.
Alletto, L., Pot, V., Giuliano, S., Costes, M., Perdrieux, F., and Justes, E. (2015) Temporal variation in soil physical properties improves the water dynamics modeling in a conventionally-tilled soil. Geoderma, 243( 244), 18–28.
Asgarzadeh, H., Mosaddeghi, M. R., Dexter, A. R., Mahboubi, A. A., and Neyshabouri, M. R. (2014). Determination of soil available water for plants: consistency between laboratory and field measurements. Geoderma, (226–227), 8–20.
Babaeian, E., Homaee, M., and Noroozi, A.A. (2013). Assessing spectrotransfer functions and pedotransfer functions in predicting soil water retentions. Conservation of soil and water resources, 3(2), 25-43. (In Persian).
Baker, L., and Ellison, D. (2008). Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144, 212–224.
Blake, G.R., and Hartge, K.H. (1986) Bulk density. In: Klute, A., Ed., Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy—Soil Science Society of America, Madison, 363-382.
Charles, W., Oluwapelumi, O. (2021). Predictive modelling of soils’ hydraulic conductivity using artificial neural network and multiple linear regression. SN Applied Sciences.3. https://doi.org/10.1007/s42452-020-03974-7.
Dobarco, M.R., Isabelle Cousin, I., Bas, C.L., Martin, M. P. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95.
Da Silva Junior, J.J., Colombo, A., Oliveira, G.C., Silva, B., and Juliaci, J. (2020). Estimation of tropical soils’ hydraulic pro-perties with inverse method and tension infiltrometer field data. Ambiente & Água, 15(3), 1-15https://doi.org/10.4136/ambi-agua.2503.
Ebrahimi, F., and Raoof, M. (2015). Effect of different Rosetta Predictive Model on Soil Hydraulic Properties. Estimation Using HYDRUS-2D and Effect of Land use changing on their. Iranian Journal of Irrigation and Drainage, 2(9), 303-313. (In Persian).
Ethan, D.G., and Eric, E. S. (2007). A comparison of land surface model soil hydraulic properties estimated by inverse modeling and pedotransfer functions. Water Resourse Research, 43. W05418.
Fooladmand, H.R. (2011). Pedotransfer functions for point estimation of soil moisture characteristic curve in some Iranian soils. African Journal of Agricultural Research, 6(6), 1586-1591.
Ghorbani Dashtaki, S., Homaee, M. and Khodaverdiloo, H. (2010). Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management, 26(1), 68–74.
Gribb, M. M., Forkutsa, I., Hansen, A., Chandler, D. G. and McNamara, J. P. (2009). The Effect of Various Soil Hydraulic Property Estimates on Soil Moisture Simulations. Vadose Zone Journal, 8, 321–331. doi:10.2136/vzj2008.0088.
Gunarathna, M.H., Sakaic, K., Nakandakaric, T., Momiid, K., Kumaria, M.K.N., and Amarasekaraa, M.G.T.S. (2019). Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil & Tillage Research 190, 109–119. https://doi.org/10.1016/j.still.2019.02.009
Jafari Gilandeh, S., Rasoulzadeh, A., and Khodaverdiloo, H. (2013). Evaluating some pedotransfer functions for simulation of transient water flow in soil. Conservation of soil and water resources, 2(4), 1-13. (In Persian).
Kirkham, J.M., Smith, C.J., Doyle, R.B., and Brown, P.H. 2019. Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol).
Peer Journal, 6, e6002
https://doi.org/10.7717/peerj.6002
Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Lai, J., and Ren, L. (2016). Buffer index effects on hydraulic conductivity measurements using numerical simulations of double-ring infiltration. Soil Science Society of America Journal, 74, 1526–1536.
Mashayekhi, P., Ghorbani Dashtaki, S., Mosaddeghi, M.R., Shirani , H. and Mohammadi Nodoushan, A.R . (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2), 203-210.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H., and Nouri M.R. (2017). Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Water and Soil Research, 47(4): 829-838. (In Persian).
Merdun, H., Cinar, O., Meral, R., and Apan, M. (2006). Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90,108–116.
Mirzaee, S., Zolfaghari, A. A, Gorjib, M Miles Dyckc, M., and Ghorbani Dashtakia, S. (2013). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes Archives of Agronomy and Soil Science, http://dx.doi.org/10.1080/03650340.2013.823477
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.
Nakhaei, M. and Šimůnek, J. (2014). Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. Journal of Hydrology and Hydromechanics, 62(1), 7–15.
Nemes, A., Roberts, R.T., Rawls, W.J., Pachepsky, Ya. A., and van Genuchten, M.Th. (2008). Software to estimate –33 and –1500 kPa soil water retention using the non-parametric k-Nearest Neighbor technique. Environmental Modelling and Software, 23, 254–255.
Pachepsky, Y., and Rawls, W.J. 2004. Development of Pedotransfer Functions in Soil Hydrology. 30, Pp, 512.
Rastgou, M., Bayatb, H., Mansoorizadehc, M., Gregoryd, A.S. (2020). Estimating the soil water retention curve: Comparison of multiple nonlinear regression approach and random forest data mining technique.
Computers and Electronics in Agriculture, 174.
https://doi.org/10.1016/j.compag.2020.105502.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1,318–333.
Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M. (2011). Inverse modeling of in situ soil water dynamics: investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrology and Earth System Sciences, 15, 3043– 059.
Schaap, M.G., Leij, F.J., van Genuchten, M.Th. (1998). Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62, 847–855.
Schaap, M. G., and van Genuchten, M.Th. (2001). ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251,163-176.
Schelle, H. Iden S.C., Schlüter, S., Vogel, H.J. and Durner, W. (2012). Identification of effective flow processes and properties from virtual soils using inverse modeling. Geophysical Research Abstracts, 14.
Šimůnek, J., van Genuchten, M.Th. Šejna, M. (2012). HYDRUS: model use, calibration, and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261–1274.
Trejo-Alonso J., Carlos Fuentes, C., Chávez, C., Quevedo, A., Gutierrez-Lopez, A., and Brandon González-Correa, B. (2021). Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks
Water, 13, 705.
https://doi.org/10.3390/w13050705.
Van Genuchten M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G. and van Genuchten, M.Th. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9, 795–820. doi:10.2136/vzj2010.0045
Vrugt, J. A., Stauffer, P. H., Wöhling, Th., Robinson, B.A., and Vesselinov, V.V. (2008). Inverse modeling of subsurface flow and transport Properties: a review with new developments. Vadose Zone Journal, 7(2), 843–864.