بررسی اثر تغییر اقلیم و تاریخ کشت بر عملکرد ذرت با استفاده از مدل WOFOST

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

3 استادیار هواشناسی کشاورزی، گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 بخش تحقیقات فنی و مهندسی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان گلستان، گرگان، ایران

چکیده

با توجه به پیشرفت فناوری و افزایش روزافزون جمعیت در دنیا لزوم شناخت و توجه به پدیده تغییر اقلیم امری اجتناب‌ناپذیر است. هدف از پژوهش بررسی تغییرات عملکرد گیاه ذرت برای سال‌های آتی در شهرستان گرگان به همراه تغییر تاریخ کشت می­باشد. در این پژوهش با استفاده از مدل گیاهی WOFOST در شهرستان گرگان بر اساس تیمارهای مختلف کم­آبیاری و تاریخ‌های مختلف کشت به بررسی عملکرد دانه گیاه ذرت سینگل کراس دیر رس برای شرایط آینده پرداخته شد. تیمارهای آبیاری شامل 100 درصد (T1)، 75 درصد (T2) و 50 درصد (T3) آب مورد نیاز گیاه می­باشد. به این منظور با کمک مدل آماری SDSM و مدل گردش عمومی جو HadCM3 برای تمام سناریوهای گزارش پنجم ریزمقیاس­نمایی در دو دوره سی‌ساله آتی (۲۰۵۰-۲۰۲۰ و ۲۰۸۰-۲۰۵۰) انجام شد. برای واسنجی مدل SDSM از داده­های دوره ۱۹80-۱۹95 و برای صحت‌سنجی از داده­های دوره 1995-2010 استفاده شد. مدل WOFOST توسط داده‌های اندازه­گیری سال ۱۳91 واسنجی و  بعد از آن برای صحت­سنجی از داده­های سال ۱۳۹2 استفاده شد. شاخص­های آماری جذر میانگین مربعات خطا (RMSE)، شاخص سازگاری (d)، ضریب کارایی مدل (E)، ضریب تبیین (R2) و ضریب باقی‌مانده (CRM) مربوط به شبیه­سازی عملکرد دانه در مرحله واسنجی به­ترتیب برابر 217/0 تن بر هکتار، ۹7/۰، 94/۰، ۹3/۰ و 15/0 و در مرحله صحت­سنجی به­ترتیب برابر 241/0 تن بر هکتار، ۹8/۰، 93/۰، ۹6/۰و  14/0 به­دست آمد. اعداد به­دست آمده نشان‌دهنده کارایی خوب مدل WOFOST می­باشد. همچنین برای چهار تاریخ کشت مختلف در سه تیمار  T1، T2و T3 عملکرد گیاه ذرت شبیه‌سازی شد. در دوره 2050-2020 کم‌ترین عملکرد در تیمارT3  تحت سناریوی RCP8.5 در تاریخ ۱2 خرداد به مقدار 3/4 تن بر هکتار پیش‌بینی شد که نسبت به دوره پایه 81/32 درصد کاهش دارد. در دوره 2080-2050 کم‌ترین عملکرد در تیمارT3  تحت سناریوی RCP8.5 در تاریخ ۱2 خرداد به مقدار 3/3 تن بر هکتار پیش‌بینی شد که نسبت به دوره پایه 43/48 درصد کاهش دارد. بهترین زمان تاریخ کشت برای گیاه ذرت در شهرستان گرگان ۲ تیر می­باشد که از این نتایج می­توان برای مدیریت بهتر کشت و آبیاری در شهرستان گرگان استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation the Effect of Climate Change and Planting Date on Maize Yield using WOFOST Model

نویسندگان [English]

  • Pezhman Salarieh 1
  • Mojtaba Khoshravesh 2
  • Reza Norooz Valashedi 3
  • Alireza Kiani 4
1 MSc Student of Irrigation and Drainage, Sari Agricultural Sciences and Natural Resources University
2 1- Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Assistant Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
4 Agricultural Engineering Department, Golestan Agricultural and Natural Resources Research and Education Center, Gorgan, Iran
چکیده [English]

Given the advancement of technology and the growing population in the world, the need to recognize and pay attention to the phenomenon of climate change is inevitable. The purpose of this study is to investigate the changes in maize yield for future years in Gorgan with a change in planting date. In this research, the grain yield of maize SC late maturing for future conditions was investigated using WOFOST model in Gorgan city based on different deficit irrigation treatments and different planting dates. Irrigation treatments including 100% (T1), 75% (T2) and 50% (T3) of water requirement. For this purpose, using SDSM statistical model and HadCM3 general circulation model for all scenarios, the fifth microscale report was performed in the next two thirty-year periods (2020-2050 and 2050-2080). Data for the period 1980-1995 were used to calibrate the SDSM model and data for the period 1995-2010 were used for validation. The WOFOST model was calibrated by the measurement data of 1391 and then the data of 1392 were used for validation. Statistical indices of root mean square error (RMSE), compatibility index (d), model efficiency coefficient (E), explanation coefficient (R2) and residual coefficient (CRM) related to grain yield simulation in calibration period was equal to 0.217 tons per hectare, 0.97, 0.94, 0.93 and 0.15, respectively and in the validation period, was obtained 0.241 tons per hectare, 0.98, 0.93, 0.96 and 0.14, respectively. The numbers obtained indicate the good performance of the WOFOST model. Also, the maize grain yield was simulated for four different planting dates in three treatments of T1, T2 and T3. In the period 2020-2050, the lowest yield was predicted 4.3 tons per hectare in T3 treatment under the RCP8.5 scenario on 2 June, which is a decrease of 32.81% compared to the base period. In the period 2050-2080, the lowest yield was predicted 3.3 tons per hectare in T3 treatment under the RCP8.5 scenario on 2 June, which is a decrease of 48.43% compared to the base period. The best planting date for corn in Gorgan city is June 23, which can be used for better management of cultivation and irrigation in Gorgan.

کلیدواژه‌ها [English]

  • SDSM Model
  • Downscaling Model
  • HadCM3
  • Grain Yield
Afzali, M., Taei Semiromi, J., & Amirinezhad, M. (2018). Evaluation of WOFOST model for growth and development simulation of maize under summer cropping system conditions in sub-tropical region of Southern Kerman. Iranian Journal of Field Crop Science, 49(1): 57-64. In Farsi
Ahmadi, M., Hooshmand, A., Broomand Nasab, S., & Sharifi, M. A. (2019). Calibration and validation of WOFOST model for wheat in qazvin plain. Iranian Journal of Soil and Water Research, 50(2): 329-338. In Farsi
Boogaard, H. L., Van Diepen, C. A., Roetter, R. P., Cabrera, J. M. C. A. & Van Laar, H. H. (1998). WOFOST 7.1; User’s Guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 DLO Winand Staring Center, Wageningen, The Netherlands.
Ceglar, A., & Kajfez-Bogataj, L. (2012). Simulation of maize yield in current and changed climatic
conditions: Addressing modelling uncertainties and the importance of bias correction in climate model
simulations. European Journal of Agronomy, 37, 83–95.
Daneshfaraz, R., & Razaghpour, H. (2014). Evaluation of climate change impacts on potential evapotranspiration in the west Azerbaijan province. Journal of Geographic Space, 14(46): 199-211. In Farsi
Dowswell, C. (2019). Maize in the third world. CRC Press.
Basheer, A. K., Lu, H., Omer, A., Ali, A. B., & Abdeldgader, A. M. S. (2016). Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 20: 1331-1353.
Bayatani, F., Fallah Ghalhari, G., Karami, M., & Taeei Samiromi, J. (2020). The impacts of climate change on the risk of cold stress in autumn crop pattern (Case study: Tropical and subtropical areas of Kerman province). Journal of Natural Environmental Hazards, 9(24): 63-78. In Farsi
Bhatia, V.S., P., Singh, S. P., Wani, G. S., Chauhan, A. V. R., Rao Mishra, A. K., & Srinivas, K. (2008). Analysis of potential yields and yield gaps of rainfed soybean in India usingCROPGRO Soybeanmodel. Agricultural and Forest Meteorology 148: 1252–1265.
Dane, J. H. & Topp, C. G. (Eds.). (2020). Methods of Soil Analysis, Part 4: Physical Methods (Vol. 20). John Wiley & Sons. 1744 pp.
Egdernezhad, A., Masjedi, A. R., Shokouhfar, A. R., & Alavifazel, M. (2018). Evaluation of AquaCrop and WOFOST in simulating of corn yield under deficit irrigation. Journal of Plant Production Science, 8(1): 69-82. In Farsi
Ghonchehpour, D., Sadoddin, A., Bahremand, A., Salmanmahini, A., & Jakeman, A. (2019). Application of a quantitative screening approach in statistical downscaling model (SDSM) to generate climate change scenarios (Case study: the Gorgan-roud River Basin). Ecohydrology, 6(2): 397-414. In Farsi
Hosseini, S. T., Khoshravesh, M., & Ziatabar Ahmadi, M. (2016). Effect of climate change and evaluation of planting date on soybean yield. Journal of Water Research in Agriculture, 29(4): 559-575. In Farsi
IPCC. (2014). Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, 48-Pachauri, R.K and Reisinger, A. (Eds.)]. IPCC, Geneva, Switzerland, 104 pp.
Lane, J. W., & Ferrira, V. A. (1982). Sensitivity analysis. In CREAM, A field scale model for chemical, Runoff and EROSIN from Agricultural Management system, (ed.) W. G. Knisel, Vol. A. Model Documentation. USDA conservation Res. Report No. 26. 113-158. Washington, D.C.
Li, X., Takahashi, T., Suzuki, N., & Kaiser, H. M. (2011). The impact of climate change on maize yields in the United States and China. Agricultural Systems 104: 348–353
Ma, G., Huang, J., Wu, W., Fan, J., Zou, J., & Wu, S. (2013). Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield. Mathematical and Computer Modelling, 58(3): 634-643.
Mera, R. J., Niyogi, D., Buol, G. S., Wilkerson, G. G., & Semazzi, F. H. M. (2006). Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model-based study. Global and Planetary Change 54: 163–182.
Meza, F. J., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems 98: 21–30
Milapalli, D., Singh, R., & Raghuwanshi, N. (2009). Physically based model for simulating flow in furrow irrigation. I: Model development. Journal of Irrigation and Drainage Engineering, 135: 739-746.
Mohammadkhani, A., Pourgholam-Amiji, M., Sohrabi, T., & Liaghat, A. (2020). The effect of different levels of water stress in two surface and subsurface drip irrigation systems on yield and water productivity of maize. Journal of Water and Irrigation Management, 10(2): 247-264. In Farsi
Moradi, R., Koochaki, A., & Nassiri Mahallati, M. (2014). Effect of climate change on maize production and shifting of planting date as adaptation strategy in Mashhad. Agricultural Science and Sustainable Production, 23(4): 111-130.
Rahimi-Moghaddam, S., Eyni Nargeseh, H., Deihimfard, R., & Haghighat, M. (2019). Simulating climate change effect on maize grain yield in Kermanshah province using a process-based simulation model. Iranian Journal of Crop Sciences, 20(4): 315-328. In Farsi
Sarafrouzeh, F., Jalali, M., Jalali, T., & Jamali, A. (2014). Changing the effect of future climate on water consumption of wheat in Tabriz. Journal of Geographic Space, 12(37): 96-81. In Farsi
Shafiei, M., Ghahreman, B., Saghafian, B., Davari, K., & Vazifeh Doost, M. (2018). Global sensitivity analysis of WOFOST model parameters for maize and wheat yield simulation. Iranian Journal of Soil and Water Research, 49(4): 831-839. In Farsi
Walpole, R. E., Myers, R. M. & Myers, S. L. (1998). Probability and statistics for engineers and scientists. (6th ed) New Jersey: Prentice Hall International.823pp.
Wilby, R. L., Dawson C. W., & Barrow, E. M. (2006). SDSM-a decision support tool for the assessment of regional climate change impacts. Environmental Modeling and Software, 17(3):147-159.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. American Meteorology Society, 63: 1309-1313.