Azad, A., Manoochehri, M., Kashi, H., Farzin, S., Karami, H., Nourani, V., & Shiri, J. (2019). Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. Journal of Hydrology, 571, 214-224.
Azimi, H., Bonakdari, H., Ebtehaj, I., & Michelson, D. G. (2018). A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Computing and Applications, 29(6), 249-258.
Babaali, H.R., & Dehghani, R. (2017). Compare intelligent models to Estimate monthly Precipitation Kakareza Basian, Iranian journal of Ecohydrology, 4(1), 1-11. doi: 10.22059/ije.2017.60911.
Ghorbani, M., Azani, A., & Mahmoudi Vanolya, S. (2015). Rainfall-Runoff Modeling Using Hybrid Intelligent Models. Iran Water Resources Research, 11(2), 146-150.
Jang JSR. 1993 ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manag. Cyber., 23(3): 665-685.
Khalili, N., Khodashenas, S.R., Davari, K., & Mousavi Bayegi, M. (2008). Prediction of daily precipitation using artificial natural networks, case study: synoptic station of Mashhad. Watershed research,89-99.
Maqsood, I., Khan, M.R., & Abraham, A. (2004). An ensemble of neural networks for weather forecasting. Neural Computing & Applications, 13(2), 112-122.
Mehr, A. D., Nourani, V., Khosrowshahi, V. K., & Ghorbani, M. A. (2019). A hybrid support vector regression–firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 16(1), 335-346.
Mekanik, F., Imteaz, M. A., Gato-Trinidad, S., & Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11-21.
Mendel, J. M. (2017). Uncertain rule-based fuzzy systems. In Introduction and new directions (p. 684). Springer International Publishing.
Mislan, H., Hardwinarto, S., & Sumaryono, M. A. (2015). Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan-Indonesia. Procedia Computer Science, 59, 142-151.
Nasseri, M., Asghari, K., & Abedini, M. J. (2008). Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications, 35(3), 1415-1421.
Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O. (2014). Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology 514: 358–377.
Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal, 35(1), 67-83.
Riad, S., Mania, J., Bouchaou, L., & Najjar, Y. (2004). Rainfall-runoff model usingan artificial neural network approach. Mathematical and Computer Modelling, 40(7-8), 839-846.
Xiang, Y., Gou, L., He, L., Xia, S., & Wang, W. (2018). A SVR–ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73, 874-883.