برآورد رطوبت ظرفیت زراعی و نقطه پژمردگی دائم گیاه با استفاده از داده‌های استوانه‌های دوگانه و حل عددی معکوس در بافت‌های مختلف خاک

نوع مقاله : مقاله پژوهشی

نویسنده

بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

در این پژوهش از نرم­افزار HYDRUS- 2D/3D برای برآورد نقاط ظرفیت زراعی (FC) و نقطه پژمردگی دائم (PWP) با استفاده از رویکرد حل معکوس، استفاده شد. برای این منظور، داده­های نفوذ تجمعی اندازه­گیری­شده به روش استوانه­های دوگانه در 95 نقطه از مناطق مختلف استان اصفهان به عنوان ورودی مدل مورد استفاده قرار گرفت. خاک­های مورد مطالعه در هفت کلاس بافتی شامل لوم­شنی (SL)، رسی (C)، لوم (L)، لوم سیلتی (SiL)، لوم رسی (CL)، لوم رس سیلتی (SiCL) و رس سیلتی (SiC) قرار گرفتند. در اکثر نمونه­ها مقادیر شبیه­سازی­شده FC و PWP کمتر از مقدار اندازه­گیری­شده آنها بود. نتایج نشان داد که کمترین میزان خطا در برآورد نقاط FC  مربوط به بافت SL (884/0= R2 و 021/0=RMSE) و بیشترین خطای برآورد FC مربوط به بافت C (1/0= R2 و 122/0=RMSE) بود. همچنین کمترین خطای برآورد نقاط PWP  مربوط به بافت L (858/0= R2 و 003/0=RMSE) و بیشترین خطای برآورد PWP مربوط به بافت C (21/0= R2 و 025/0=RMSE) بود. در کل میزان خطای شبیه­سازی با افزایش میزان رس در خاک و سنگین­تر شدن بافت خاک افزایش پیدا کرد. همچنین در همه خاک­ها مقادیر PWP شبیه­سازی­شده نسبت به مقادیر FC شبیه­سازی­شده، همخوانی نسبتا بیشتری با مقادیر اندازه­گیری­شده آنها داشت. مقادیر ضریب تبیین برای FC و PWP در همه خاک­ها به ترتیب معادل 77/0 و 80/0 بود. در کل روش حل عددی معکوس از دقت قابل قبولی برای برآورد FC و PWP به ویژه در خاک­های دارای بافت سبک برخوردار بود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Field Capacity and Permanent Wilting Point of Plant Using Double-Rings Data and Inverse Numerical Solution in Different Soil Textures

نویسنده [English]

  • parisa MASHAYEKHI
Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension organization (AREEO), Isfahan, Iran.
چکیده [English]

In this study, HYDRUS-2D/3D software was used to estimate the field capacity (FC) and permanent wilting point (PWP) using double-rings infiltration data via inverse solution. For this purpose, the double rings infiltration data obtained from 95 points of different regions in Isfahan were used as model input. The studied soils were classified into seven textural classes including Sandy Loam (SL), Clay (C), Loam (L), Silty Loam (SiL), Clay Loam (CL), Silty Clay Loam (SiCL), and Silty Clay (SiC). For most soil samples, the simulated values ​​of FC and PWP were less than the measured values. The results showed that the lowest error value in estimating FC was related to SL texture (R2 = 0.884 and RMSE = 0.021) and the highest error value for FC estimation was related to Clay texture (R2 = 0.1 and RMSE = 0.122). Furthermore, the lowest and the highest error values for PWP estimation were observed in Loam (R2 = 0.858 and RMSE = 0.003) and Clay (R2 = 0.21 and RMSE = 0.025) soils, respectively. In general, the simulation error increased with increasing clay content in the soil. The estimated PWP values ​​were relatively more consistent than the estimated FC values with their measured values, in all soil samples. Coefficients of determination (R2) were 0.77 and 0.80 for FC and PWP in all soils, respectively. In general, the inverse numerical solution method had acceptable accuracy for estimating FC and PWP, especially in light textured soils.

کلیدواژه‌ها [English]

  • Double rings
  • HYDRUS-2D/3D
  • plant available water
  • Simulation
Bahrami, A., Aghamir, F., Bahrami, M. and Khodaverdiloo, H. (2020). Inverse modeling towards parameter estimation of the nonlinear soil hydraulic functions using developed multistep outflow procedure. Journal of Hydrology, 590, 125446.
Blake, G.R. and Hartge, K.H. (1986). Bulk density. In: Methods of soil analysis. Part 1, 2nd edn (ed. A. Klute),. Agronomy Monographs. 9. ASA, Madison, WI. pp. 363–375
Dobarco, R.M., Cousin, I., Le Bas, C. and Martin, M. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95.
Gribb, M. M., Forkutsa, I., Hansen, A., Chandler, D. G. and McNamara, J. P. (2009). The Effect of Various Soil Hydraulic Property Esti mates on Soil Moisture Simulations. Vadose Zone Journal, 8, 321–331. doi:10.2136/vzj2008.0088
Huang, J., Wu, P. and Xining, Z. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104, 93-102.
Kirkham, J.M., Smith, C., Doyle, R.B. and Brown. P.B. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). Peer Journal, 6, e6002 https://doi.org/10.7717/peerj.6002
Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Lai, J. and Ren, L. (2016). Estimation of effective hydraulic parameters in heterogeneous soils at field scale, Geoderma, 264, 28–41
Maqsoud A, Bussière B, Mbonimpa M and Aubertin M. )2004(. Hysteresis effects on the water retention curve: A comparison between laboratory results and predictive models. Pp. 8-15. Proceedings of the 57th geotechincal conference, Canada.
Mashayekhi, P., Ghorbani Dashtaki, S., Mosaddeghi, M.R., Shirani, H. and Mohammadi Nodoushan, A. R. (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2), 203-210.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H. and Nouri M.R. (2017). Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Water and Soil Research, 47(4), 829-838. (In Persian)
Minasny, B. and McBratney, A.B.  (2002). The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 66,352– 361.
Mirzaee, S., Zolfaghari, A. A, Gorjib, M Miles Dyckc, M., and Ghorbani Dashtakia, S. (2013). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes Archives of Agronomy and Soil Science, http://dx.doi.org/10.1080/03650340.2013.823477
 Mousavi Dehmurdi, A., Ghorbani Dashtaki, Sh. And Mashayekhi, P. (2018). Evaluation of double-ring infiltrometers method for measuring the vertical infiltration in different soil textures using HYDRUS. Journal of Water and Soil Conservation, 25(3), 241-253. (In Farsi).
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.
Novák, V. and Havrila, J. (2006). Method to estimate the critical soil water content of limited availability for plants. Biologia Journal, 61(19), 289-293.
Qiao, J., Zhu, Y., Jia, X., Huang, L. and Shao, M. (2018). Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-018-2036-x.
Raoof, M. and Pilpayeh, A. R. (2013). Estimating soil wetting profile under saturated infiltration process by numerical inversion solution in land slopes. Middle-East Journal of Scientific Research, 13(6), 732–736.
Rucker, D.F. (2010). Inverse upscaling of hydraulic parameters during constant flux infiltration using borehole radar. Advances in Water Resources. http: //dx.doi.org/10.1016/j. advwatres. 2010.11.001.
Toluee, R., Neyshabouri, M.R. and Rasoulzadeh, A. (2014). Estimating Parametrs of Brooks-Corey Soil Water Retention Curve for Drying and Wetting Branches by Pedotransfer Functions. Water and soil science, 25(3), 195-210. (In Persian).
Tomasella, J., Pachepsky, Y.A., Crestana, S. and Rawls, W.J. )2003(. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal, 67, 1085-1092.
Silva, B.M., Silva, É.A., Oliveira, G.C., Ferreira, M.M. and Serafim, M.E. (2014). Plant-available soil water capacity: estimation methods and implications. Revista Brasileira de Ciência do Solo, 38, 464–475.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1,318–333.
Šimůnek, J. Kodesová, R. and Gribb, M. M. (1999). Estimating hysteresis in the soil water retention function from modified cone penetrometer test. Water Resources Research, 35, 1329–1345.
Šimůnek, J., Šejna, M. and van Genuchten, M. Th. (2012). HYDRUS: model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261-1274.
Vanclooster, M., Javaux, M. and Lambot, S. (2007). Recent advances in characterizing flow and transport in unsaturated soil at the core and field. Estudios de la Zona No Saturada del Suelo, 3, 19–35
Van Genuchten M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G. and van Genuchten, M.Th. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properti es: A review. Vadose Zone Journal, 9, 795–820. doi:10.2136/vzj2010.0045