Bahrami, A., Aghamir, F., Bahrami, M. and Khodaverdiloo, H. (2020). Inverse modeling towards parameter estimation of the nonlinear soil hydraulic functions using developed multistep outflow procedure. Journal of Hydrology, 590, 125446.
Blake, G.R. and Hartge, K.H. (1986). Bulk density. In: Methods of soil analysis. Part 1, 2nd edn (ed. A. Klute),. Agronomy Monographs. 9. ASA, Madison, WI. pp. 363–375
Dobarco, R.M., Cousin, I., Le Bas, C. and Martin, M. (2019). Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma, 336, 81–95.
Gribb, M. M., Forkutsa, I., Hansen, A., Chandler, D. G. and McNamara, J. P. (2009). The Effect of Various Soil Hydraulic Property Esti mates on Soil Moisture Simulations. Vadose Zone Journal, 8, 321–331. doi:10.2136/vzj2008.0088
Huang, J., Wu, P. and Xining, Z. (2013). Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104, 93-102.
Kirkham, J.M., Smith, C., Doyle, R.B. and Brown. P.B. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol).
Peer Journal, 6, e6002
https://doi.org/10.7717/peerj.6002
Klute, A. (1986). Methods of Soil Analysis. Part 1- Physical and Mineralogical Methods. 2nd ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Lai, J. and Ren, L. (2016). Estimation of effective hydraulic parameters in heterogeneous soils at field scale, Geoderma, 264, 28–41
Maqsoud A, Bussière B, Mbonimpa M and Aubertin M. )2004(. Hysteresis effects on the water retention curve: A comparison between laboratory results and predictive models. Pp. 8-15. Proceedings of the 57th geotechincal conference, Canada.
Mashayekhi, P., Ghorbani Dashtaki, S., Mosaddeghi, M.R., Shirani, H. and Mohammadi Nodoushan, A. R. (2016). Different scenarios for inverse estimation of soil hydraulic parameters from double ring infiltrometer data using HYDRUS 2D/3D. International Agrophysics, 30(2), 203-210.
Mashayekhi P., Ghorbani Dashtaki S., Mosaddeghi M.R., Shirani H. and Nouri M.R. (2017). Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Water and Soil Research, 47(4), 829-838. (In Persian)
Minasny, B. and McBratney, A.B. (2002). The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 66,352– 361.
Mirzaee, S., Zolfaghari, A. A, Gorjib, M Miles Dyckc, M., and Ghorbani Dashtakia, S. (2013). Evaluation of infiltration models with different numbers of fitting parameters in different soil texture classes
Archives of Agronomy and Soil Science,
http://dx.doi.org/10.1080/03650340.2013.823477
Mousavi Dehmurdi, A., Ghorbani Dashtaki, Sh. And Mashayekhi, P. (2018). Evaluation of double-ring infiltrometers method for measuring the vertical infiltration in different soil textures using HYDRUS.
Journal of Water and Soil Conservation, 25(3), 241-253. (In Farsi).
Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522.
Novák, V. and Havrila, J. (2006). Method to estimate the critical soil water content of limited availability for plants. Biologia Journal, 61(19), 289-293.
Qiao, J., Zhu, Y., Jia, X., Huang, L. and Shao, M. (2018). Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess Plateau, China. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-018-2036-x.
Raoof, M. and Pilpayeh, A. R. (2013). Estimating soil wetting profile under saturated infiltration process by numerical inversion solution in land slopes. Middle-East Journal of Scientific Research, 13(6), 732–736.
Rucker, D.F. (2010). Inverse upscaling of hydraulic parameters during constant flux infiltration using borehole radar. Advances in Water Resources. http: //dx.doi.org/10.1016/j. advwatres. 2010.11.001.
Toluee, R., Neyshabouri, M.R. and Rasoulzadeh, A. (2014). Estimating Parametrs of Brooks-Corey Soil Water Retention Curve for Drying and Wetting Branches by Pedotransfer Functions. Water and soil science, 25(3), 195-210. (In Persian).
Tomasella, J., Pachepsky, Y.A., Crestana, S. and Rawls, W.J. )2003(. Comparison of two techniques to develop pedotransfer functions for water retention. Soil Science Society of America Journal, 67, 1085-1092.
Silva, B.M., Silva, É.A., Oliveira, G.C., Ferreira, M.M. and Serafim, M.E. (2014). Plant-available soil water capacity: estimation methods and implications. Revista Brasileira de Ciência do Solo, 38, 464–475.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1,318–333.
Šimůnek, J. Kodesová, R. and Gribb, M. M. (1999). Estimating hysteresis in the soil water retention function from modified cone penetrometer test. Water Resources Research, 35, 1329–1345.
Šimůnek, J., Šejna, M. and van Genuchten, M. Th. (2012). HYDRUS: model use, calibration and validation. American Society of Agricultural and Biological Engineers, 55(4), 1261-1274.
Vanclooster, M., Javaux, M. and Lambot, S. (2007). Recent advances in characterizing flow and transport in unsaturated soil at the core and field. Estudios de la Zona No Saturada del Suelo, 3, 19–35
Van Genuchten M. Th. 1980. A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M.G. and van Genuchten, M.Th. (2010). Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properti es: A review. Vadose Zone Journal, 9, 795–820. doi:10.2136/vzj2010.0045