Banaie M. H. (2001). Map of Iran soils moisture and temperature regimes. Soil and Water research institute. Tehran. Iran. (in Farsi)
Ben-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61(1), 1-15.
Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near‐infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2), 480-490.
Daniel, K., Tripathi, N., Honda, K., & Apisit, E. (2004). Analysis of VNIR (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand. International Journal of Remote Sensing, 25(3), 643-652.
Demattê, J. A. M. (2002). Characterization and discrimination of soils by their reflected electromagnetic energy. Pesquisa Agropecuária Brasileira, 37(10), 1445-1458
Farifteh, J., Farshad, A., & George, R. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma, 130(3-4), 191-206.
Gee, G.W., & Bauder, J.W. (1986) Particle‐size analysis Methods of soil analysis: Part 1 Physical and mineralogical methods. 5:383-411.
Gomez, C., P. Lagacherie, and G. Coulouma. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma,148:141-148.
Gomez, C., & Coulouma, G. (2018). Importance of the spatial extent for using soil properties estimated by laboratory VNIR/SWIR spectroscopy: Examples of the clay and calcium carbonate content. Geoderma, 330, 244-253
Hassani, A., Bahrami, H.A., Noroozi, A.A., & Oustan, Sh., (2014). Visible-near infrared reflectance spectroscopy for assessment of soil properties in gypseous and calcareous soils. Watershed engineering and management, 6(2), 125-138. (In Farsi)
Henderson, T., Baumgardner, M., Franzmeier, D., Stott, D., & Coster, D. (1992). High dimensional reflectance analysis of soil organic matter. Soil Science Society of America Journal, 56(3), 865-872.
Hummel, J. W., Sudduth, K. A., & Hollinger, S. E. (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Computers and electronics in agriculture, 32(2), 149-165.
Hunt, G. R., & Salisbury, J. W. (1971). Visible and near infrared spectra of minerals and rocks. II. Carbonates. Modern Geology, 2, 23-30.
Iran Geology Organization (1995) Neyriz and Estahban map 1:250000. Tehran map publication
Islam, K., Singh, B., & McBratney, A. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Soil Research, 41(6), 1101-1114.
Khayamim, F., Khademi, H., Stenberg, B., & Wetterlind, J. (2015a) Capability of vis-NIR Spectroscopy to Predict Selected Chemical Soil Properties in Isfahan Province. JWSS. 19 (72) :81-92. (In Farsi)
Khayamim, F., Wetterlind, J., Khademi, H., Robertson, A. J., Cano, A. F., & Stenberg, B. (2015b). Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran. Journal of Near Infrared Spectroscopy, 23(3), 155-165.
Kim, I., Pullanagari, R., Deurer, M., Singh, R., Huh, K., & Clothier, B. (2014). The use of visible and near‐infrared spectroscopy for the analysis of soil water repellency. European journal of soil science, 65(3), 360-368.
McBratney, A. B., Minasny, B., & Rossel, R. V. (2006). Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma, 136(1-2), 272-278.
Minasny, B., McBratney, A., Tranter, G., & Murphy, B. (2008). Using soil knowledge for the evaluation of mid‐infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European journal of soil science, 59(5), 960-971.
Mohamed, E.S., Saleh, A.M., Belal, A.B., & Gad, A., (2018). Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Rem. Sens. Space Sci, 21 (1), 1 – 14.
Mousavi, F., Abdi, E., Ghalandarzadeh, A., Bahrami, H., & Majnounian, B. (2020). Investigating the ability of Visible-NIR spectrometry to estimate some soil properties. Iranian Journal of Forest, 11(4), 443-458. (in Farsi)
Nawar, S., Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. M. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155, 510-522.
Nelson, R.E. (1982). Carbonate and gypsum. In: Page, A.L. (Ed.), Methods of Soil Analysis. Agron. Monger. vol. 9. ASA and SSSA, Madison, WI, pp. 181–196.
Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H.-A., Abbasi, M., Dematte, J. A. M., Arthur, E., & Panagos, P. (2018). Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma, 314, 102-112.
Page, A., Miller, R., & Keeney, D. (1982). Methods of soil analysis, Part 2: Chemical and microbiological properties 2nd ed. Madison, Wisconsin, USA.
Pinheiro, É. F., Ceddia, M. B., Clingensmith, C. M., Grunwald, S., & Vasques, G. M. (2017). Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the central Amazon. Remote Sensing, 9(4), 293.
Rasooli, N., Farpoor, M., Khayamim, F., & Ranjbar, H. (2018). Prediction of selected soil properties using visible and near infrared spectroscopy in Bardsir area, Kerman Province. Iranian Journal of Soil Research, 32(2), 231-243. (in Farsi)
Reeves III, J. B., & Smith, D. B.(2009).The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of North America. Applied Geochemistry, 24(8), 1472-1481.
Reeves Iii, J., McCarty, G., & Mimmo, T. (2002). The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental pollution, 116, S277-S284.
Rinnan, Å., Van Den Berg, F., & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201-1222.
Rossel, R. V., McGlynn, R., & McBratney, A. (2006). Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma, 137(1-2), 70-82.
Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627-1639.
Seifi, M., Ahmadi, A., Neyshabouri, M.-R., Taghizadeh-Mehrjardi, R., & Bahrami, H.-A. (2020). Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran. Remote Sensing Applications: Society and Environment, 20, 100398.
Shahrayini, E., Noroozi, A., & Eghbal, M. K. (2020). Prediction of Soil Properties by Visible and Near-Infrared Reflectance Spectroscopy. Eurasian Soil Science, 53(12), 1760-1772.
Stenberg, B. (2010). Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158(1-2), 15-22.
Stenberg, B., Rossel, R. A. V., Mouazen, A. M., & Wetterlind, J. (2010). Visible and near infrared spectroscopy in soil science. Advances in agronomy, 107, 163-215.
Summers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11(1), 123-131.
Viscarra Rossel, R.A., Cattle, S.R., Ortega, A., and Fouad, Y. 2009. In situ measurements of soil colour, mineral composition and clay content by Vis–NIR spectroscopy. Geoderma, 150, 253–266.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38.
Wang, J., Ding, J., Abulimiti, A., & Cai, L. (2018). Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 6, e4703.
Williams, P., Dardenne, P., & Flinn, P. (2017). Tutorial: Items to be included in a report on a near infrared spectroscopy project. Journal of Near Infrared Spectroscopy, 25(2), 85-90.
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2), 109-130.
Xie, X.-L., & Li, A.-B. (2016). Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis-NIR spectroscopy. Biosystems engineering, 152, 126-137.
Yao, X., Huang, Y., Shang, G., Zhou, C., Cheng, T., Tian, Y., . . . Zhu, Y. (2015). Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sensing, 7(11), 14939-14966.
Yitagesu, F. A., van der Werff, H., van der Meer, F., & Hecker, C. (2012). On the relationship between plasticity and spectral characteristics of swelling soils: The 3–5 μm wavelength region. Applied clay science, 69, 67-78.