Elnikhely, E. (2017). Investigation and analysis of scour downstream of a spillway. Ain Shams Engineering Journal. DOI: 10.1016/j.asej.2017.03.008.
Farhoudi, J. and Helbar, S. M. (2010). Design of Stable Riprap Downstream of Stilling Basins Using Froude Number. Journal of Water and Soil Science. 19(1), 97-106. (In Farsi)
Halder, A. and Mahadevan, S. (2000). Probability, Reliability and Statistical Methods in Engineering Design. John Wiley & Son, New York.
Hydraulic Engineering Circular No. 14 (HEC No.14). (2006). Hydraulic Design of Energy Dissipaters for Culverts and Channels. Federal Highway Administration. Report No. FHWA-NHI-06-086.
Iran Ministry of Energy. Report No. 316. (2005). Guideline for Determination Design flood return period in river works. Iran Water Resources Management Co.P.18.
Johnson, P. A. and Dock, D. A. (1998). Probabilistic Bridge Scour Estimates. Journal of Hydraulic Engineering, 124(7), 750-754.
Karimaei Tabarestani, M. and Zarrati, A. R. (2019). Reliability analysis of riprap stability around bridge piers. Journal of Applied Water Engineering and Research. 7 (1), 79-88.
Karimaei Tabarestani, M. (2020). Study on stability and sensitivity analysis of protective riprap layer placed around bridge pier by using reliability analysis theory. Journal of Hydraulics. 14(4):51-68. (In Farsi)
Champagne, T., Barlock, R., Ghimire, S., Barkdoll, B., Gonzalez-Castro, J. and Deaton, L. (2017). Scour Reduction by Air Injection Downstream of Stilling Basins: Optimal Configuration Determination by Experimentation. Journal of Irrigation and Drainage Engineering. 04016067-1-9.
Maynord, S. T. (1987). Stable riprap for open channel flows. Ph. D dissertation, Department of Civil Engineering, Colorado State University, Ft Collins, CO.
Muzzammil, M., Siddiqui, N. A. and Siddiqui, A. F. (2008). Reliability considerations in bridge pier scouring. Journal of Structural Engineering and Mechanics. 28(1): 1-18.
Nowak, A. S. and Collins, K. R. (2000). Reliability of structures. McGraw Hill, Singapore.
Novak, P., Moffat, A.I.B., Nalluri, C. and Narayanan, R. (2007). Hydraulic structures. 4th Edition. Taylor & Francis.
Oliveto, G. and Comuniello, V. (2008). Local Scour Downstream of Positive-Step Stilling Basins. Journal of Hydraulic Engineering. 135(10), 846-851.
Oliveto, G. (2012). Local scouring downstream of a spillway with an apron. ICE Water Management, 166 (WM5) 254-261.
Pilarczyk, K. W. (1990). Stability criteria for revetments. In: Proceeding of National Conference on Hydraulics Engineering, American Society of Civil Engineering (eds.) HH Chang and JC Hill, San Diego, USA. 15-26.
Rackwitz, R. and Fiessler, B. (1976). Note on Discrete Safety Checking When Using Non-Normal Stochastic Models for Basic Variables. Load Project Working Session. Cambridge, MA: MIT.
Saber, M. and Ghodsian, M. (2020). Experimental Investigation on Scour Downstream of USBR VI Stilling Basins. Journal of Hydraulics, 14 (4): 138-148. (In Farsi)
Salamatian, S. A., Zarrati, A. R. and Banazadeh, M. (2013). Assessment of bridge safety due to scour by Bayesian network. Journal of Water Management. 166(6), 341–350.
Shafai Bajestan, M. and Omidi, S. (2016). Investigation of Scour Depth Downstream of Stilling Basin for the Case of B-Jump. Irrigation Sciences and Engineering. 38(4), 125-136. (In Persian)
Taebi, H., Fathi, M. and Shafai Bajestan, M. (2011). Prediction of stable riprap size to control scouring at downstream of stilling basin. Iranian Water Research Journal. 5(8): 23-34. (In Farsi)
Tehran Technical and Engineering Consulting Organization (TTECO). (2011). Hydraulic design report of Kan diversion dam. Report No. CAL-STP-R-DVD-ST-BD-001.
United States Army Corps of Engineers(USACE). (1997). Engineeringand design: Introduction to probability and reliability methods for usein geotechnical engineering. Engineering Circular No. 1110-2-547. Dept. of the Army. Washington D.C.
Vahidi Alvar, M., Asghari Pari, S. A., Shafai Bajestan, M. and Arman, N. (2020). Investigating the causes of scouring downstream of stilling basin of Shohada diversion dam and proposing suitable solutions to control it. Irrigation Sciences and Engineering. 43(1), 1-14. (In Farsi)