بررسی سناریوهای مختلف وضوح طیفی در برآورد ویژگی‏ های هیدرولیکی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه خاک‏شناسی دانشکدة کشاورزی دانشگاه تربیت مدرس تهران

2 استاد گروه خاک‏ شناسی دانشکدة کشاورزی دانشگاه تربیت مدرس تهران

3 استادیار سنجش از دور پژوهشکدة حفاظت خاک و آبخیزداری تهران

چکیده

توابع انتقالی خاک (PTFs) روشی غیر مستقیم برای برآورد ویژگی‏های هیدرولیکی خاک به کمک اطلاعات زودیافت خاک است که غالباً شامل بافت، مادة آلی، و جرم ویژة ظاهری خاک هستند. در چند دهة گذشته، مطالعاتی در زمینة برآورد مشخصه‏های مبنایی از روی اطلاعات طیفی خاک در گسترة مرئی و مادون قرمز نزدیک (350ـ 2500 نانومتر) انجام شده است. برآورد ویژگی‏های هیدرولیکی خاک به کمک رفتارسنجی طیفی خاک رویکرد نوینی است که چندان مد نظر قرار نگرفته است. در این پژوهش، قابلیت استفاده از توابع انتقالی طیفی (STFs) در قالب چهار سناریو شامل داده‏های طیفی در مقیاس آزمایشگاهی (سناریوی 1)، داده‏های طیفی در مقیاس سنجندة‏ Sentinel-2 (سناریوی 2)، داده‏های طیفی در مقیاس سنجندة ابرطیفی EnMap (سناریوی 3)، و مقایسة آن‏ها با نتایجِ کاربرد توابع Rosetta و HYPRES (سناریوی 4) در مقیاس‏های نقطه‏ای و واحد نقشة خاک به‏ منظور برآورد پارامترهای مدل معلم‌ـ ون‏گنوختن بررسی شد. به ‏منظور اشتقاق STFها، روش رگرسیون مرحله‏ای چندگانه و روش بوت‏استراپ به کار رفت. بهترین نتایج برای برآورد پارامترهای مدل معلم‌ـ ون‏گنوختن به‏ازای سناریوی 1 و 2 (متوسط  برابر 382/0، 029/0، 061/0، 634/0 برای ، ، ، ) به‏ دست آمد. همچنین، استفاده از سه سناریوی طیفی به بالاترین دقت در پیش‏بینی منحنی مشخصة رطوبتی (متوسط RMSR برابر 0337/0 سانتی‌متر مکعب بر سانتی‌متر مکعب) و هدایت هیدرولیکی خاک (متوسط RMSR برابر 015/1 سانتی‌متر بر روز) در مقایسه با سناریوی چهارم انجامید. این نتایج نشان می‏دهد استفاده از اطلاعات با وضوح طیفی مختلف می‏تواند روشی غیر مستقیم و سریع و کم‏هزینه در برآورد ویژگی‏های هیدرولیکی خاک، به‏ویژه در مقیاس بزرگ، باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Various Spectral Resolution Scenarios on Predicting Soil Hydraulic Properties

نویسندگان [English]

  • Ebrahim Babaeian 1
  • Mehdi Homaee 2
  • Ali Akbar Norouzi 3
1 PhD candidate, Department of Soil Science, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran
2 Professor, Department of Soil Science, Faculty of Agriculture, Tarbiat Modarres University, Tehran, Iran
3 Assistant Professor, Soil Conservation and Watershed Management Research Institute (SCWMRI), Tehran, Iran
چکیده [English]

Pedotransfer functions (PTFs) have been developed to indirectly predict soil hydraulic properties (SHPs) from easily measurable soil properties mainly including textural properties, soil organic matter and bulk density. In the last few decades, several studies have addressed the potential of soil spectral information in visible, near-infrared (350-2500 nm), to provide predictors to estimate elementary soil properties. Predicting SHPs by soil spectral data is a new approach that has not yet been explored. In this study, the feasibility to estimate the Mualem-van Genuchten (MvG) hydraulic parameters was investigated using Spectro Transfer Functions (STFs). Four scenarios of data affrication namely: ASD full spectrum (scenario I), EnMAP (scenario II), Sentinel-2 (scenario III) satellite-based spectral resolution and laboratory and soil map-based Rosetta and HYPRESPTFs (scenario IV) were investigated. A Stepwise Multiple Linear Regression (SMLR) coupled with bootstrap method was employed to derive STFs. The most appropriate results for predicting MvG parameters were obtained for scenarios I and II. Compared with scenario IV, all the other three spectral scenarios performed reasonably well in terms of predicting soil water retention characteristics and unsaturated hydraulic conductivity. These findings suggest that spectral reflectance data at various spectral resolution levels is a promising indirect and quick method for large scale soil hydraulic parameter estimations.

کلیدواژه‌ها [English]

  • Spectral reflectance
  • Pedotransfer functions
  • spectrotransfer functions
  • soil water characteristics curve
  • Mualem-van Genuchten
Babaeian, E., Homaee, M., and Norouzi, A. A. (2014a). Evaluating point and parametric spectral transfer functions for predicting soil water characteristics. Journal of Water and Soil Research, Accepted. (In Farsi)
Babaeian, E., Homaee, M., and Norouzi, A. A. (2014b). Deriving and validating parametric spectrotransfer functions in order to estimate soil hydraulic properties in VIS-NIR-SWIR range. Journal of Water and Soil Conservation Research, 3(3), 21-36. (In Farsi)
Babaeian, E., Homaee, M., and Norouzi, A. A. (2012). Deriving and validating point spectrotransfer functions in Vis-NIR-SWIR range to estimate soil water retention. Journal of Water and Soil Conservation Research, 1(4), 41-27. (In Farsi)
Ben-Dor, E. and Banin, A. (1995). Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59: 364–372.
Ben-Dor, E., Irons, J. R., and Epema, G. F. (1999). Soil reflectance. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing (A. N. Rencz, Ed.), Vol. 3, p. 111–188. 3rd ed. Wiley, New York.
Bilgili, A. V., van Es, H. M., Akbas, F., Durka, A., and Hively, W. D. (2010). Visible nearinfrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Arid Environment, 74: 229-238.
Clark, R. N. (1999). Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz, A.N. (Ed.), Remote Sensing for Earth Sciences. Manual of Remote Sensing. John Wiley and Sons, Inc., Toronto, p. 3–58.
Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., and Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95: 12653–12680.
Dardanne, P., Sinnaeve, G., and Baeten, V. (2000). Multivariate calibration and chemometrics for near infrared spectroscopy: which method? Journal of Near Infrared Spectroscopy, 8: 229–237.
Farrokhian Firouzi, A. and Homaee, M. (2005). Predicting water retention curve of Gypsiferous soils using the derived point pedotransfer functions. Journal of Agricultural Engineering Research, 6(24), 129-142. (In Farsi)
Farrokhian Firouzi, A. and Homaee, M. (2003). Predicting hydraulic properties of Gypsiferous soils using the derived parametric pedotransfer functions. Journal of Agricultural Engineering Research, 4(15), 57-72. (In Farsi)
Gaffey, S. J. (1986). Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 μm): Calcite, aragonite and dolomite. America Mineral. 71: 151–162.
Gee, G. W. and Bauder, J. W. (1986). Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, p. 383–411.
Ghorbani Dashtaki, S. and Homaee, M. (2004). Estimating soil water retention using point pedotransfer functions. Journal of Agricultural science, 4(10): 157-166. (In Farsi)
Ghorbani Dashtaki, S. and Homaee, M. (2002). Parametric estimation of unsaturated hydraulic functions using pedotransferfunctions. Journal of Agricultural Engineering Research, 3(12), 1-16. (In Farsi)
Gomez, C., Lagacherie, Ph., and Coulouma, G. (2012). Regional prediction of eight common soil properties and their spatial structure from hyperspectral Vis-NIR data. Geoderma, 189-190: 176-185.
Gomez, C., Lagacherie, P., and Coulouma, G. (2008b). Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148:141–148.
Guanter, L., Segl, K., and Kaufmann, H. (2009). Simulation of the optical remote-sensing sciences with application to the EnMAP hyperspectral mission. IEEE Transection of Geoscience and Remote Sensing, 47 (7): 2340–2351.
Ho, R. (2006). Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS. Chapman and Hall, CRC.
Homaee, M. and Farrokhian Firouzi, A. (2008). Deriving point and parametric pedotransfer functions of some gypsiferous soils. Australian Journal of Soil Research, 46: 219–227.
Jana, R. B., Mohanty, B., and Springer, E. P. (2007). Multiscale pedotransfer functions for soil water retention. Vadose Zone Journal, 6:868–878.
Janik, L. J., Forrester, S. T., and Rawson, A. (2009). The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems, 97:179–188.
Jarvis, N. J., Zavatiaro, L., Rajkai, K., Reynolds, W. D., Olsen, P. A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B., and Jacques, D. (2002). Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108:1–17.
Khodaverdiloo, H., Homaee, M., van Genuchten, M. T., and Ghorbani Dashtaki, S. (2011). Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399: 93–99.
Khodaverdiloo, H. and Homaee, M. (2002). Deriving pedotransfer functions to estimate soil water characteristics curve. Journal of Agricultural Engineering Research, 10, 36-46. (In Farsi)
Lagacherie, P., Baret, F., Feret, J. B., Madeira Netto, J., and Robbez-Masson, J. M. (2008). Estimation of soil clay and calcium carbonate using laboratory, field, and airborne hyperspectral measurements. Remote Sensing and Environment, 112 (3): 825–835.
Lopez, L, R., Behrens, T., Schmidt, K., Stevens, A., Alexandre, J., Dematte, M., and Scholten, T. (2013). The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma, 195: 268-279.
Minasny, B., Mc Bratney, A. B., Tranter, G., and Murphy, B. W. (2008). Using soil knowledge for the evaluation of mid-infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science, 59: 960–97.
Motalebi, E., Homaee, M., Zarei, Gh., and Mahmoudi, Sh. (2010). Envestigating calcium carbonate on soil water characteristics of Garmsar soils using pedotransfer functions. Journal of Irrigation and Drainage, 4(3), 426-439. (In Farsi)
Motalebi, E., Homaee, M., and Pazira, A. (2007). Estimating hydraulic parameters of clayey soils using point pedotransfer functions. Journal of Agricultural Science, 13(2), 349-365. (In Farsi)
Navabeian, M., Leyaghat, M., and Homaee, M. (2004). Estimating saturated hydraulic conductivity using pedotransfer functions. Journal of Agricultural Engineering Research, 12, 1-16. (In Farsi)
Nocita, M., Stevens, A., Noon, C., and van Wesemael, B. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199: 37–42.
Pachepsky, Y. A., Rawls, W. J., and Lin, H. S. (2006). Hydropedology and pedotransfer functions. Geoderma, 131:308–316.
Pachepsky, Y. A. and Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology. Developments in Soil Science, 30, Elsevier, Amsterdam.
Peixoto, J. P. and Oort, A. H. (1993). Physics of Climate. American Institute of Physics, New York.
Rawls, W. J. and Pachepsky, Y. A. (2002). Using fi eld topographic descriptors to estimate soil water retention. Soil Science, 167:423–435.
Santra, P., Sahoo, R. N., Das, B. S., Samal, R. N., Pattanaik, A. K., and Gupta, V. K. (2009). Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS–NIR–SWIR) region. Geoderma, 152: 338–349.
Savvides, A., Corstanje, R., Baxter, S. J., Rawlins, B. J., and Lark, R. M. (2010). The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale dependent. Geoderma, 154: 353–358.
Schaap, M. G., Leij, F. J., and van Genuchten, M. Th. (2001). ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, Journal of Hydrology, 251:163–176.
Schaap, M. G. and Leij, F. J. (1998). Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil Tillage Research, 47:37–42.
Somers, B., Gysels, V., Verstraeten, W. W., Delalieux, S., and Coppin, P. (2010). Modelling moisture-induced soil reflectance changes in cultivated sandy soils: a case study in citrus orchards. European Journal of Soil Science, 61: 1091-1105.
Stenberg, B., ViscarraRossel, R. A., Mouazen, A. M., and Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Donald L. Sparks, editor: Advances in Agronomy, Vol. 107, Burlington: Academic Press, 2010, pp. 163-215. http://dx.doi.org/10.1016/S0065-2113(10)07005-7.
Tranter, G., Minasny, B., McBratney, A. B., ViscarraRossel, R. A., and Murphy, B. W. (2008). Comparing Spectral Soil Inference Systems and Mid-Infrared Spectroscopic Predictions of Soil Moisture Retention. Soil Science Society of America Journal, 72(5): 1394-1400.
van Genuchten, M. Th., F. J., Leij and S. R. Yates. (1992). The RETC code for quantifying the hydraulic functions of unsaturated soils. Project summary, EPA’S Robert S. Kerr Environmental Research Lab., Ada, OK, USA.
van Genuchten, M. Th. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44: 892–898.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G., and van Genuchten, M. Th. (2010). Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review. Vadose Zone Journal, 9: 795-820.
Vereecken, H., Diels, J., Vanorshoven, J., Feyen, J., and Bouma, J. (1992). Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Science Society of America Journal, 56:1371–1378.
Vereecken, H., Maes, J., and Feyen, J. (1990). Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science, 149:1–12.
Vereecken, H., Maes, J., Feyen, J., and Darius, P. (1989). Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Science, 148:389–403.
Viscarra Rossel, R. A. and Behrens, T. (2010).Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158:46–54.
Viscarra Rossel, R. A. V. (2008). ParLeS: Software for chemometric analysis of spectroscopic data. Chemometrics and Intelligent Laboratory Systems, 90: 72–83.
ViscarraRossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., and Skjemstad, J. O. (2006c). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59–75.
Walkley A. J. and Black I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.
Weynants, M., Vereecken, H., and Javaux, M. (2009). Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model. Vadoze Zone Journal, 8(1): 86-95.
Zhang, T., Li, L., and Zheng, B. (2013). Estimation of agricultural soil properties with imaging and laboratory spectroscopy. Journal of Applied Remote Sensing, 7:1-25.