مقایسه روش‌های شیکه عصبی مصنوعی و درخت تصمیم در تهیه نشته رقیمی خاک در منطقه اردکان

روح الله نقی‌زاده مهرچردي،فریدون سردمدار،حمید عیسی،علیرضا توافی،نورایت تومانیان

مهدی سلطانی،محمدرضا حسینی

1. استادیار،دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان
2. استادیار،دانشکده مهندسی و فناوری کشاورزی،پردیس کشاورزی و منابع طبیعی دانشگاه تهران
3. استادیار،مرکز تحقیقات کشاورزی و منابع طبیعی اصفهان
4. استادیار و مربی مرکز ملی تحقیقات شوری

(تاریخ دریافت: 1391/08/28-تاریخ تصویب: 1392/03/18)

چکیده

در پایان به تفسیری اطلاعات مکانی خاک، به کار بردن داده‌های مکمی رقیمی و ارتباط آنها با داده‌های مشاهداتی صحرایی در حال افزایش است. استفاده از اطلاعات رقیمی از طریق روش‌های کامپیوتری که اصطلاحاً نقشه‌برداری رقیمی خاک خوانندگی می‌تواند، قابل استفاده و گسترش‌پذیر از روش‌های سنتی نقشه‌برداری خاک است. در این سو، در پیوسته‌اند و تحقیقات شوری ETM در این پژوهش استفاده شد. شامل یکسرمین، داده‌های تصور 'ماهواره لنستس، و نشته سطوح زمین‌شناسی است. نتایج این تحقیق نشان داد، برای پیش‌بینی کلاس خاک، مدل درختی و نقشه عصبی مصنوعی حدود هفت درصد دقت و مدل درختی و نقشه عصبی مصنوعی دقت کامل یک کلاس خاک شامل خمیسی سطوح زمین‌شناسی و نشته خوشرنگی در بهره‌وری بهترین ابزار در این زمینه است. مدل‌های درختی نسبت به روی نقشه عصبی مصنوعی دقت بالاتری دارند و همچنین نتایج مدل درختی بهتر راحت‌تر است. لذا پیشنهاد می‌شود در مطالعات آینده برای تهیه نقشه رقیمی خاک از مدل درختی استفاده شود.

کلیدواژه‌ها: پیش‌بینی مکانی، گره‌های بزرگ، خاک، مرجع، نقشه‌برداری رقیمی

مقدمه

در گذشته برای تهیه نقشه خاک بررسی تغییرات خصوصیات

ان اغلب روشهای امروزی معامله با کار می‌گیرد. در بررسی مطالعات تغییرات پیوسته‌های خاک داخل و احاطه‌ای نقشه نادیده گرفته می‌شود، این روشهای نقشه‌برداری (Rossiter et al., 2005) برای تشخیص پیوسته‌های خاک را ایجاد کرده که در حال حاضر منبع اصلی اطلاعات تغییرات مکانی خاک خوشرنگی است. اما استفاده از این نقشه‌برداری در این منطقه اراضی پیوسته است و شکست گذارانه در این منطقه اراضی پیوسته است و شکست گذارانه

* rh_taghizade@yahoo.com
1. Landscape
Pedometric techniques

McBratney et al. (2005) and Hengl et al. (2010) introduced the concept of high-resolution soil maps, which are based on the integration of various data sources, including soil samples, remote sensing data, and geographic information systems (GIS). These maps provide a detailed understanding of soil properties at a fine scale, allowing for more accurate characterization of soil variability.

3. Pedometric techniques

McBratney et al. (2000) developed a method called the Latin hypercube method for the generation of spatially balanced samples of soil properties. This method is particularly useful for estimating the spatial variability of soil properties and for designing field experiments.

3. Pedometric techniques

McBratney et al. (2000) developed a method called the Latin hypercube method for the generation of spatially balanced samples of soil properties. This method is particularly useful for estimating the spatial variability of soil properties and for designing field experiments.

3. Pedometric techniques

McBratney et al. (2000) developed a method called the Latin hypercube method for the generation of spatially balanced samples of soil properties. This method is particularly useful for estimating the spatial variability of soil properties and for designing field experiments.
تشخیص تفاوت‌ها، استفاده شد. سپس عکس‌های هوایی و روش‌های پرتو مانند شاهد شد و در محیط سازمان جغرافیایی (عکس‌های استاندارد) قرار گرفت. در مراحل بعد، عکس‌ها و روش‌های داخل سازمان جغرافیایی با استفاده از تصاویر Mahowald (Roshiter and Mahowald, 2001) نشان داده شد که می‌تواند در مورد میراث و ترکیب در حفظ اماکن طبیعی استفاده شود. بررسی‌های تخصصی سیستم‌های زمینی مورد نیاز را تعریف کرده‌اند.

استخراج باران‌برداری زمین‌نما

در تحقیق حاضر سایلی، نیم‌سالانه نرخ باران‌برداری شور، با گذشته تکنیک نمره‌گذاری ۱۰ متری را برآورد کرد. این سایلی در محیط سازمان جغرافیایی از نظر استخراج اطلاعات کمکی یا تصاویر شیرین‌شده منتقل‌داهنده می‌شود. عکس‌های گرفته‌شده در این مطالعه یکپارچه‌شده شده‌اند. این مطالعه سایلی ۱۰ متری را ثبت کرده‌اند.

تصاویر ماهواره‌ای

خاک‌های گوناگون خصوصیات طبیعی متقافت دارد (Andronikov and Dorebrovski, 1991) بیشتر منطقه‌های مطالعاتی فاقد پوسته گیاهی است. تغییر خصوصیات و نوع خاک‌ها بر اساس اطلاعات ماهواره‌ای قابل شناسایی است. تصاویر ETM (Mettermich and Zinkel, 2003) برای استفاده شد. برای کاشت تصاویر ماهواره‌ای استفاده شد. بر اساس نمودارهای خاک‌سازی منطقه، شاخص‌های از قبل شاخص گیاهی نرم‌شده ۱۵ (تشکیل نمود.

1. PCI Geomatica
2. Ortho-geo-referencing
3. Georeference
4. Slope
5. Elevation
6. Altitude above channel network
7. Modified catchments area
8. Mid-slop position
9. Valley depth
10. Wetness Index
11. Multiresolution index of Valley Bottom Flatness
12. Multiresolution ridge top flatness index
13. Catchment slope
14. SAGA
15. Normalized difference vegetation index
آنالیز سازی داده‌ها

برای پیش‌بینی کلاس‌های خاک در سطح گروه تجزیه دادها، کلاس‌های کوچک‌ترایکل‌های و به‌مرنگ تغییر وابسته در نظر گرفته شد. همچنین هم‌اکنون اطلاعاتی یا کمکی به فرم رستری با ارائه سلولی ۲۰۰ متری بهبود شد. این اطلاعات منجر به ارائه کلاس‌های خاک و منجر به بهبود محتوای، به فرم نهایی ۲۲۰ تبلیغ و برای انجام فرآیند مدل‌سازی نرم‌افزارهای مختلف استفاده شد.

مدل سازی خاک

درخت تصمیم

مدل درختی طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ای از شرط‌های منطقی به‌صورت یک گرایش با ساختار درختی برای طبقه‌بندی یا پیش‌بینی کمیکی یک منجر به کار می‌شود. این آماده است و درخت تصمیم در صورت طبقه‌بندی رجوی روش‌های ناپارامتریک بوده و ابزار کلاس‌های مختلفی یا کمیت‌ها را از اعداد مجموعه‌ای بی‌کرانی کننده کمی و پیش‌بینی کننده. برای این روشهای مجموعه‌ی
دارد. لایه ورودی شکه ۱۵ ورودی و لایه خروجی ۶ نورون دارد. تعداد نورون‌های لاها‌ی خمخی به پیش‌بینی مسئول نظر وابسته است. در این تحقیق چکیده صفحه برای ایجاد شبکه بررسی‌گر نورون‌های لاها‌ی خمخی و تعداد ایپوک در فرایند اموزش به صورت سطحی و دستی به دست آمد. در این پژوهش، ۱۰۰۰ نورون و ۱۰۰۰ نورون آموزشی شد.

برای تعبیر بهترین ترکیب از شاخه صحت کلی از استفاده شد. نتایج نشان داد نورون ۹ تعداد نورون و ۲۰۰ دارای ویژگی ترکیب برای پیش‌بینی گروه برگ خاک است. در نتیجه، ساعتار ۱۵:۲۹:۵۱ برای پیش‌بینی کلاس گروه خاک پیشنهاد می‌شود. همچنین، نتایج مترس صحت نشان داد کلاس های‌لپسی‌اوان (۸۶ درصد) بالاترین صحت طبقه‌بندی را دارده. در حالی که مدل در مرحله آموزش نتایج هشیک از های‌لپسی‌اوان (۸۷ درصد) را بهترین طبقه‌بندی کند. دقیقاً یکی از شبکه در مرحله آموزش ۷۰ درصد است.

بعضی از مشاهدات سخت بهینه در مرحله آموزش شبکه عصبی مصنوعی: نیاز دارد. شبکه آموزش‌دهنده بر با توجه به آزمون آماری کردن دنبال این مدل برای پیش‌بینی کلاس خاک با تعداد زیادی از موارد مشابه در نظر گرفته شد. با توجه به مانند (۱۹۹۱) مدل بهترین طبقه‌بندی مربوط به چپ‌کننده کلاس خاک است که دقیقاً صفر درصد دارد. دقیقاً کلی مدل ۴۸ درصد برای پیش‌بینی کلاس خاک تا سطح زیادی از مدل بزرگ است. همچنین، نتایج آلاین حساسیت شبکه عصبی مصنوعی نشان داد مدل زیست فیزیولوژی برای پیش‌بینی کلاس خاک با سطح گروه بزرگ بالاترین اثر را دارد. بعد از سطح زیست فیزیولوژی برمز و سرمزی از جمله شاخه خمیس و همواره در با یک درجه نتیجه بالا حاصل همکاری در (شکل ۵).

مدل سازی مکانیک شبکه عصبی مصنوعی: تولوزی. شبکه بانکی عاملی مهم در طراحی شبکه عصبی مصنوعی است. برای این ساختار بر سرعت باگتی و صحت طبقه‌بندی عالی اثر می‌گذارد. تعداد لاها‌ی خمخی و تعداد نورون‌ها از اصلی شبکه بررسی‌گر است. تعداد ایپوک برای در مرحله باگتی سیستم مهم است. تعداد نورون‌ها در لاها‌ی ورودی و خروجی نتایج تام نمی‌باشد و به تعیین مکانیک، از کلاس‌های خاک مدل استفاده شده بستگی برابر است. ۲۰۰۵) (Zhu, (1999) et al

شکل ۴. نتیجه‌گیری شاخه خمیس به‌دست آمده از مدل رقومی ارتفاع

شکل ۵. آنالیز حساسیت ورودی‌های خاک با استفاده از شبکه عصبی

1. Digital Elevation Model

در روش درخت تصمیم، مجموعه‌ای از شرط‌های متفاوت به‌صورت الگوریتمی با ساختار درختی برای طبقهبندی کلاس‌های خاک به کار می‌رود. نتایج پیش‌بینی در مرجع آموزش نشان داد که درصد مدل درخت تصمیم 82 درصد است. نتایج مادریس خطای خاک داده بهترین طبقهبندی در این روش متعلق به گروه بزرگ‌تر (37 درصد) و دبترین طبقهبندی مرتب به کلاس هایکوبمیزد (66 درصد) است.

بعد از به‌دست‌آوردن الگموئی مربوط به پیش‌بینی، مدل درختی بر داده‌های آزمون (40 درصد از داده‌ها) را از مدل به‌منظور پیش‌بینی کلاس‌های بزرگ، نسبت به طبقه‌بندی درخت نتایج بهتری نسبت به طبقه‌بندی درخت نتایج بهتری نسبت به طبقه‌بندی خاک داده که درصد پیش‌بینی صفر درصد دارد. دقت کلی مدل درصد 50 درصد به‌منظور پیش‌بینی کلاس‌های بزرگ باید طبقه‌بندی مربوط به کلاس هایکوبمیزد خاک است. به‌منظور پیش‌بینی کلاس‌های بزرگ، مدل درختی بر داده‌های آزمون (40 درصد از داده‌ها) را از مدل به‌منظور پیش‌بینی

شکل 6: نتایج متفاوت مصنوعی را برای پیش‌بینی تراکم‌های بزرگ خاک

جدول 1: گروه‌بندی عصبی مصنوعی

<table>
<thead>
<tr>
<th>گروه</th>
<th>رضایت (%)</th>
<th>تراکم (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>B</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

منابع

1. Scull et al. (2012)
2. Jafari et al. (2005)
3. Morcan and Bui et al. (1999)
4. Henderson et al., 2005
5. Bui and Moran, 2003
6. Bui, 2002
7. Minasy and McBratney, 2006
8. Mendoza-Santos et al., 2006
نتیجه‌گیری
نتایج مقایسه مدل‌های شبکه عصبی مصنوعی و درخت تصمیم برای پیش‌بینی کلس خاک نشان داد که مدل درخت تصمیم در جداسازی خاک‌های کارای با قاری دارد. بنابراین، از این مدل برای طبقه‌بندی استفاده شد. نتایج همچنین نشان داد که شاخه خصی و سطح زمین‌فیزیکی مهم‌ترین متغیرهای کمکی و صحت طبقه‌بندی به تعادل داده شده و است. ارتباط قوی بین داده خاک و یارانه‌های محیطی نیز کی دیگر از عوامل تأثیرگذار بر دقت است. به‌طور کلی نتایج نشان داد تکنیک‌های خاک‌آماری، به‌خصوص درخت تصمیم، می‌تواند فراوان نقش بسزایی خاک‌ها را در کست‌های وسیع و مشخص از هر قوی واروع طبیعی به‌کارهای انجام دهد، روش سنگی را ارتفا نخشد، سرعت عمل و کارآمدی نشان داد که در انتقال داده‌ها و اطلاعات افزایش دهد و قابلیت استفاده از آنها را برای قشر وسیعی از شاخه‌های علمی ایجاد یک کینگ داده. به‌پیشنهاد می‌شود برای تهیه نقشه‌های خاک از مدل‌های درختی در مطالعات آینده استفاده شود.

RESOURCES

