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Accurate mapping of crop types and their spatial distribution, along with estimating cultivated
areas, plays a critical role in water resource planning and agricultural land management in arid
and semi-arid regions. In this study, field surveys were first conducted to collect precise
geographic coordinates of selected crop fields, including wheat, maize, sesame, and alfalfa,
and these reference points were subsequently integrated into the Google Earth Engine
environment for alignment with remote sensing data. Sentinel-2 imagery was processed
through atmospheric correction and cloud masking, while Sentinel-1 data underwent
geometric correction and speckle filtering. A set of spectral indices derived from Sentinel-2,
together with backscatter intensity and polarization ratio features extracted from Sentinel-1,
was generated and integrated to enhance the separability of crop types with similar
phenological characteristics. The collected reference samples were divided into training (70%)
and validation (30%) subsets, and three classification algorithms, Random Forest, Support
Vector Machine, and Extreme Gradient Boosting, were applied to produce the final crop type
map. Model performance was evaluated using the confusion matrix, overall accuracy, and the
Kappa coefficient. The results indicated that the Random Forest algorithm achieved the highest
performance, with an overall accuracy of 96% and a Kappa coefficient of 0.93, demonstrating
superior discrimination of crop types, particularly wheat. The Extreme Gradient Boosting
model ranked second with an accuracy of 89%, while the Support Vector Machine exhibited
lower performance. Comparison of the estimated cultivated areas with official agricultural
statistics further confirmed the high reliability of the Random Forest results.
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EXTENDED ABSTRACT

Introduction

Accurate mapping of crop types and the estimation of their cultivated areas are essential components of
sustainable agricultural management, particularly in arid and semi-arid regions such as southwestern Iran.
Rapid population growth, diminishing water resources, and the accelerating impacts of climate change have
intensified the need for timely and reliable information on cropping patterns. Remote sensing provides a
practical and cost-efficient means for agricultural monitoring, offering repeated temporal coverage and high
spatial detail through multisource satellite observations. The combined use of optical and radar imagery has
proven especially valuable, as it integrates both spectral and structural information to improve discrimination
among crops with similar spectral characteristics.

Although considerable progress has been made in crop mapping using satellite imagery, there remains a
lack of consistent and transferable frameworks that combine optical and radar data in an operational manner
at basin scale in Iran. The Maroon-Jarrahi Basin, one of the country’s key agricultural regions, faces severe
challenges from groundwater depletion and increasing climatic variability. This situation requires an accurate,
spatially explicit understanding of crop distribution, particularly for major crops such as wheat, maize, sesame,
and alfalfa. The present study seeks to establish a comprehensive classification framework that integrates
Sentinel-1 and Sentinel-2 datasets to generate accurate crop type maps and reliable acreage estimates for this
critical agricultural region.

Methods

The study employed a supervised classification design using multisource satellite data and extensive field
observations collected between 2021 and 2024 within the Maroon-Jarrahi sub-basin of Khuzestan Province,
southwestern Iran. Field data included precise GPS-located samples of four major crops (wheat, maize, sesame,
and alfalfa) collected across several administrative districts.

Sentinel-2 imagery was atmospherically corrected and cloud-masked using the Fmask algorithm. A suite
of vegetation indices sensitive to plant biophysical and phenological traits was derived and resampled to a 10-
m spatial resolution. For Sentinel-1, radar backscatter data acquired in Interferometric Wide (IW) mode with
VV and VH polarizations were processed. Speckle noise was minimized using a 5x5 adaptive Lee filter,
preserving textural integrity. The polarization ratio (VV/VH) was further computed to capture variations in
canopy structure and surface moisture. All radar and optical layers were fused into a single composite dataset
to maximize spectral and structural feature diversity. Moreover, All samples for each class were compiled,
with 70% allocated for model training and 30% reserved for independent validation

Classification experiments were conducted in the Google Earth Engine environment coupled with
Python-based processing. Three classification algorithms, Random Forest (RF), Support Vector Machine
(SVM), and Extreme Gradient Boosting (XGBoost) were calibrated and tested. For RF, model parameters
included 100 decision trees, five variables per split, and a minimum leaf population of three. The SVM
classifier used a radial basis kernel, with optimized y values ranging from 0.0002 to 0.0004 and C values
between 1 and 100. The XGBoost model underwent grid-based hyperparameter tuning with five-fold cross-
validation to identify optimal values of n_estimators, max_depth, learning_rate, and subsample rate.

Model evaluation was based on a confusion matrix and a set of standard accuracy metrics, including
overall accuracy (OA), Kappa coefficient, precision, recall, and F1-score. A spatially stratified random
sampling approach was adopted to minimize spatial autocorrelation between training and validation samples.
The final classified maps were exported as GeoTIFF files, and crop areas were computed at both county and
basin levels.

Results

The comparative assessment of classifiers revealed clear differences in performance. The Random Forest
model produced the highest accuracy (OA = 96%, Kappa = 0.93, F1 = 0.97), demonstrating a strong ability to
distinguish spectrally similar crops, especially between wheat and alfalfa, while maintaining resilience to noise
and spatial heterogeneity. The RF approach effectively reduced confusion between vegetated and non-
vegetated classes, with minimal misclassification of water bodies or algae.

The XGBoost classifier ranked second (OA = 89%, Kappa = 0.83, F1 = 0.90), achieving stable results
across most crop classes but showing some confusion between bare soil and sparse vegetation, particularly
under post-harvest conditions when spectral signatures converge. The Support Vector Machine yielded the
lowest performance (OA = 54%, Kappa = 0.31, F1 = 0.55), largely due to its sensitivity to inter-class spectral
overlap, notably between sesame and maize.

Area estimation results confirmed strong agreement between RF-derived crop acreage and official
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agricultural statistics, with deviations of less than 5% for wheat. For alfalfa, a minor overestimation was
observed, attributed to its persistent greenness and mixed-pixel effects. The combined use of Sentinel-1 and
Sentinel-2 data enhanced the accuracy of water-related classifications, accurately delineating open water and
aquatic vegetation. Visual assessment further showed that the RF-generated maps exhibited the most coherent
and spatially consistent patterns, whereas XGBoost maps displayed moderate fragmentation and SVM outputs
contained irregular artifacts. Overall, the integration of radar and optical data markedly improved class
separability, reinforcing the complementary value of multisensor fusion for crop mapping in arid
environments.

Conclusion

This research establishes a coherent and replicable framework for crop classification and acreage
estimation based on the integration of optical and radar satellite data. The results highlight the potential of
Sentinel-1 and Sentinel-2 fusion to significantly improve the accuracy and reliability of crop mapping in data-
scarce arid and semi-arid regions. Among the tested classification approaches, the Random Forest algorithm
provided the most consistent and robust outcomes, producing highly accurate and spatially stable crop maps.

The proposed methodology provides a transferable and scalable foundation for regional agricultural
monitoring, enabling timely assessment of cropping patterns and supporting more informed water resource
management and agricultural policy decisions. Future efforts should incorporate multi-year climatic and
phenological datasets to strengthen temporal generalization and move toward dynamic, near-real-time
monitoring systems across diverse agro-ecological zones of Iran.
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