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EXTENDED ABSTRACT

Introduction

Increasing greenhouse gas concentrations and climate change significantly affect water resources and
hydrological processes, while extreme events such as floods and droughts impose substantial economic and
social impacts (Almazroui et al., 2020; Kim et al., 2021; Aryal et al., 2019; UNISDR, 2009; Jongman et al.,
2012; Hirabayashi et al., 2021; Houshmand Kouchi et al., 2019). General Circulation Models (GCMs) are the
primary tools for predicting climate change, but their coarse spatial resolution requires bias correction for local
and regional studies (Sachindra et al., 2018; Taylor et al., 2012). The CMIP6 project, providing SSP and RCP
scenarios, enables higher-accuracy simulations of future climate changes (Eyring et al., 2016; O’Neill et al.,
2016). Traditional bias correction methods, such as Linear Scaling (LS) and Quantile Mapping (QM),
effectively reduce systematic errors but have limitations in capturing nonlinear relationships and temporal
dependencies (Shiru and Park, 2020; Jaiswal et al., 2022; Heshmati et al., 2025). Recently, machine learning
algorithms, including XGBoost and LSTM, have shown improved performance in modeling complex
precipitation patterns and providing more accurate bias corrections (Li et al., 2023; Tanimu et al., 2024). This
study evaluates the performance of both traditional and machine learning-based bias correction methods on
CMIP6 precipitation outputs under SSP scenarios in the Poldokhtar watershed, aiming to reduce uncertainty
and improve hydrological predictions and water resources management.

Method

This study focuses on the Poldokhtar watershed, a sub-basin of the Karkheh River in western Iran,
covering an area of 2,073 km?, with the Kashkan River as its main stream. The data used include daily
projections from General Circulation Models (GCMs) in the NEX-GDDP-CMIP6 dataset for both historical
and future periods under SSP126, SSP245, SSP370, and SSP585 scenarios. Observed precipitation data from
three meteorological stations within the watershed were used to correct biases in the GCM outputs. Three bias
correction methods Linear Scaling (LS), Quantile Mapping (QM), and the machine learning algorithm
XGBoost were evaluated. Additionally, a Long Short-Term Memory (LSTM) recurrent neural network was
applied to capture long-term temporal dependencies and achieve more accurate precipitation adjustments.
Model performance before and after bias correction was assessed using statistical metrics including MAE,
RMSE, Pearson correlation coefficient, NSH, and KGE. Based on these metrics, GCMs were ranked at each
station, and the cumulative ranks across the three stations were used to select the best-performing model for
the watershed. This approach enables more accurate precipitation predictions and supports the analysis of
climate change impacts on water resources.

Results

In this study, the performance of 23 CMIP6 climate models in simulating precipitation at three stations
Poldokhtar, Afrineh, and Doab Veisian was evaluated. Results indicated that the raw model outputs exhibited
considerable bias, with high RMSE and MAE values and low correlation and NSE, performing even worse
than the simple observational mean. After applying bias correction methods, the linear scaling (LS) approach
only slightly reduced errors and provided limited improvements in performance metrics, while the quantile
mapping (QM) method generally worsened model performance across most indices. The XGBoost machine
learning algorithm significantly reduced systematic errors and improved RMSE, MAE, NSE, and KGE,

leading to the identification of selected models such as CanESM6, MIROC6, and GISS-E2-1-G. The LSTM

approach also reduced mean errors but failed to reproduce variance and temporal correlation structures. Future
precipitation projections using XGBoost-corrected CanESM6 indicated increases in winter and spring
precipitation and notable monthly seasonal shifts, particularly under more severe SSP370 and SSP585
scenarios, while summer precipitation remained largely unchanged. These findings highlight that combining
climate models with advanced machine learning techniques substantially enhances the reconstruction of
historical precipitation and the assessment of climate change impacts.

Conclusions

In this study, the performance of 23 CMIP6 climate models in simulating precipitation at three stations—
Poldokhtar, Afrineh, and Doab Veisian—was evaluated. Raw model outputs exhibited significant errors and
low correlation. The LS method provided only slight improvements, while QM performed worse. Machine
learning approaches, particularly XGBoost, substantially enhanced model accuracy by reducing MAE and
RMSE and improving NSE and KGE. The XGBoost-corrected CanESM6 model showed the best performance
and was used for future scenario projections. Predictions indicate increased precipitation in spring and autumn
and slight decreases in winter, highlighting important applications for water resources management and climate
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change forecasting.
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