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EXTENDED ABSTRACT

Introduction

Streamflow yield is one of the most important hydrological variables for water resources management in
arid and semi-arid regions such as Iran. Accurate forecasting of monthly streamflow yield is essential for
optimal reservoir operation, drought mitigation, agricultural water allocation, and sustainable water supply
planning. Given Iran’s climate with low and highly irregular precipitation, reliable monthly streamflow yield
forecasting is particularly critical. Major challenges in monthly streamflow yield forecasting include high
temporal variability, non-stationarity, and pronounced nonlinear behavior of hydrological time series.
Although classical statistical models such as ARIMA and SARIMA have long been applied, they frequently
fail to capture the complex patterns inherent in monthly streamflow yield data. In recent years, machine
learning and data-driven techniques have demonstrated significantly superior performance in modeling such
intricate relationships. Despite these advances, issues persist, including the scarcity of long-term, high-quality
monthly streamflow yield records, complex interactions between climate drivers and catchment characteristics,
and the requirement for robust generalization to unseen conditions. Consequently, comparative studies and the
development of hybrid approaches remain vital for further improvement. Given the pivotal role of accurate
monthly streamflow yield forecasting in operational hydrology and long-term water resources planning in Iran,
investment in advanced data-driven modeling has become a strategic necessity.

Materials and Methods

This study was conducted using long-term monthly mean discharge time series recorded at five
hydrometric stations (Joestan, Mehran-Joestan, Dehdar, Gate-Deh, and Alizan-Joestan) within the Taleghan
watershed, northern Iran. The dataset covers a continuous 30-year period from the water year 1368 to 1398
(1989-2019). Missing values in the monthly time series were reconstructed using linear regression and inverse
distance weighting (IDW). Homogeneity of the series was verified using the Run Test at a 95% confidence
level, while long-term persistence was confirmed by Hurst exponent values greater than 0.5, indicating the
suitability of the data for time-series forecasting.

Four models were employed and compared:

Two classical approaches: ARIMA (for non-seasonal patterns) and SARIMA (for seasonal patterns)

Two advanced machine learning models: Extreme Learning Machine (ELM) and XGBoost

All models were developed using lagged monthly streamflow yield values (1 to 4 previous months) as
predictors. Performance was assessed using Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Nash—Sutcliffe Efficiency (NSE), and Pearson correlation coefficient (R). The dataset was divided into 80%
training and 20% testing subsets, and k-fold cross-validation was applied to ensure model robustness and
prevent overfitting. Stationarity was examined using the Augmented Dickey—Fuller test, and differencing was
applied where necessary. All analyses and modeling were performed in R using the packages forecast, xgboost,
eImNNRcpp, and hydroGOF.

Results and Discussion

The performance of the four models was systematically evaluated across the five stations using the
monthly mean discharge time series. The classical ARIMA and SARIMA models provided reasonable results
for relatively smooth series but exhibited clear limitations in representing sharp peaks and strong nonlinearity
typically observed in monthly streamflow yield data. In contrast, the machine learning models consistently
outperformed the statistical models at all stations.

Among all tested configurations, XGBoost achieved the highest accuracy. At Joestan station, using four
lagged months as inputs, XGBoost yielded an NSE of 0.978 in the training period and 0.961 in the testing
period. Increasing the number of lagged inputs from one to four months systematically improved forecasting
accuracy; for XGBoost, the NSE in the testing phase increased from 0.940 to 0.960 (a 2.1% improvement),
while RMSE decreased from 0.16 to 0.15 m3/s (a 6.2% reduction).

The Extreme Learning Machine (ELM) also performed strongly and offered considerably faster training
times, making it a practical alternative under computational constraints. Overall, XGBoost proved to be the
most robust and accurate model for monthly streamflow yield forecasting in the Taleghan watershed,
demonstrating excellent generalization and stability.

Conclusion

The results strongly recommend the adoption of XGBoost as the preferred tool for operational monthly
streamflow vyield forecasting in semi-arid basins similar to Taleghan. ELM serves as an efficient high-speed
alternative, whereas traditional ARIMA and SARIMA models remain suitable only for preliminary analyses
of less complex monthly streamflow yield series. This study confirms the superior capability of advanced
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machine learning techniques in monthly streamflow yield time-series forecasting and provides a solid
foundation for their operational implementation in water resources management in Iran.
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