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Article Info ABSTRACT

Article type: Research Article Climate change has extensive effects on soil functioning, particularly through the temperature

sensitivity of microbial respiration, which is measured by the temperature sensitivity
coefficient (Q10). This study aimed to identify the factors influencing this coefficient and to
evaluate the performance of machine learning algorithms. Data from 332 soil samples
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Accepted: Oct. 11, 2025 Multilayer Perceptron—were applied. Model performance was compared using accuracy, the
. . area under the Receiver Operating Characteristic curve (ROC), and the area under the
Published online: Dec. 2025 Precision—Recall curve (PRC). The results indicated that Random Forest had the highest

performance, achieving an accuracy of 0.1170 + 0, ROC of 0.8150 + 0.080, and PRC of 0.7530
+ 0.096, outperforming the other models. The SHAP method was employed for interpreting

Keywords: the results as an explainable Al approach. This analysis revealed that glucose-induced
Climate change, respiration, fungal richness, and soil salinity were the most influential factors affecting the
Explqmable Artificial temperature sensitivity coefficient. These findings provide a clear picture of the combined role
Intelligence (XAl), of soil and microbial features and demonstrate the potential of machine learning algorithms
Machine learning, and explainable methods in analyzing soil responses to global warming.
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EXTENDED ABSTRACT

Introduction:

Climate change is having profound effects on soil health and its functioning, particularly by influencing
microbial respiration and enhancing carbon release through rising temperatures. The Q10 index, which
indicates the temperature sensitivity of respiration, is a crucial metric for understanding soil carbon dynamics
in the context of global warming. This study leverages machine learning models and explainable Al (using
SHAP) to predict Q10 values based on a combination of biological, chemical, and physical soil properties. By
employing a three-level classification system for Q10, the study offers a more nuanced perspective on
microbial response and delivers interpretable insights into soil-climate interactions.

Objective(s):

The objective of this study was to predict microbial Q10 temperature sensitivity using various machine
learning algorithms, incorporating biological, chemical, and physical soil data. Additionally, the research aims
to pinpoint the most influential factors impacting Q10 through interpretable Al methods such as SHAP, thereby
improving our understanding of soil carbon behavior in response to climate change.

Methods:

This research utilized a dataset containing soil biological, chemical, and physical property data to classify
microbial Q10 values into three sensitivity levels. Multiple machine learning models, including Random
Forest, XGBoost, SVM, and MLP, were applied, with class imbalance addressed using resampling techniques
like SMOTE, SMOTEENN, and ADASYN. Model performance was assessed using precision, recall, and F1-
score, leveraging nested cross-validation. SHAP analysis was conducted to interpret feature importance and
model decisions.

Results:

Ensemble models, particularly Extra Trees, Random Forest, and XGBoost, outperformed other models in
accuracy and AUC. Extra Trees achieved the best results, with an accuracy of 0.653 + 0.117, AUROC 0f 0.815
+ 0.080, and AUPRC of 0.753 £ 0.096. Decision Tree and KNN performed the weakest. Feature importance
analysis, both embedded and SHAP, highlighted microbial traits such as Bacteria_Positive and Mean_Glucose
as key predictors. SHAP plots also revealed threshold effects for chemical features like SOC and Alkane.
Statistical tests confirmed the superiority of ensemble models over simpler approaches (p < 0.05).

Conclusions

This research employs machine learning and explainable Al to identify critical factors affecting Q10 in
soils. Key microbial traits, including Bacteria_Positive and Mean_Glucose, and chemical features like SOC
and Alkane, were found to be influential. SHAP analysis provided transparency in model predictions,
uncovering complex relationships between soil properties and microbial respiration. These insights can inform
soil management practices and climate adaptation strategies. Future research could focus on incorporating
physical and hydraulic soil properties to refine Q10 predictions for specific ecological conditions.
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