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Climate change has extensive effects on soil functioning, particularly through the temperature 

sensitivity of microbial respiration, which is measured by the temperature sensitivity 

coefficient (Q10). This study aimed to identify the factors influencing this coefficient and to 

evaluate the performance of machine learning algorithms. Data from 332 soil samples 

collected across 29 countries were used, and the temperature sensitivity coefficient was 

classified into three levels: low, medium, and high. Six algorithms—including Random Forest, 

Support Vector Machine, K-Nearest Neighbors, Logistic Regression, Gradient Boosting, and 

Multilayer Perceptron—were applied. Model performance was compared using accuracy, the 

area under the Receiver Operating Characteristic curve (ROC), and the area under the 

Precision–Recall curve (PRC). The results indicated that Random Forest had the highest 

performance, achieving an accuracy of 0.1170 ± 0, ROC of 0.8150 ± 0.080, and PRC of 0.7530 

± 0.096, outperforming the other models. The SHAP method was employed for interpreting 

the results as an explainable AI approach. This analysis revealed that glucose-induced 

respiration, fungal richness, and soil salinity were the most influential factors affecting the 

temperature sensitivity coefficient. These findings provide a clear picture of the combined role 

of soil and microbial features and demonstrate the potential of machine learning algorithms 

and explainable methods in analyzing soil responses to global warming. 
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EXTENDED ABSTRACT 
Introduction: 

Climate change is having profound effects on soil health and its functioning, particularly by influencing 

microbial respiration and enhancing carbon release through rising temperatures. The Q10 index, which 

indicates the temperature sensitivity of respiration, is a crucial metric for understanding soil carbon dynamics 

in the context of global warming. This study leverages machine learning models and explainable AI (using 

SHAP) to predict Q10 values based on a combination of biological, chemical, and physical soil properties. By 

employing a three-level classification system for Q10, the study offers a more nuanced perspective on 

microbial response and delivers interpretable insights into soil-climate interactions. 

Objective(s): 

The objective of this study was to predict microbial Q10 temperature sensitivity using various machine 

learning algorithms, incorporating biological, chemical, and physical soil data. Additionally, the research aims 

to pinpoint the most influential factors impacting Q10 through interpretable AI methods such as SHAP, thereby 

improving our understanding of soil carbon behavior in response to climate change. 

 

Methods: 

This research utilized a dataset containing soil biological, chemical, and physical property data to classify 

microbial Q10 values into three sensitivity levels. Multiple machine learning models, including Random 

Forest, XGBoost, SVM, and MLP, were applied, with class imbalance addressed using resampling techniques 

like SMOTE, SMOTEENN, and ADASYN. Model performance was assessed using precision, recall, and F1-

score, leveraging nested cross-validation. SHAP analysis was conducted to interpret feature importance and 

model decisions. 

Results: 

Ensemble models, particularly Extra Trees, Random Forest, and XGBoost, outperformed other models in 

accuracy and AUC. Extra Trees achieved the best results, with an accuracy of 0.653 ± 0.117, AUROC of 0.815 

± 0.080, and AUPRC of 0.753 ± 0.096. Decision Tree and KNN performed the weakest. Feature importance 

analysis, both embedded and SHAP, highlighted microbial traits such as Bacteria_Positive and Mean_Glucose 

as key predictors. SHAP plots also revealed threshold effects for chemical features like SOC and Alkane. 

Statistical tests confirmed the superiority of ensemble models over simpler approaches (p < 0.05). 

 

Conclusions 

This research employs machine learning and explainable AI to identify critical factors affecting Q10 in 

soils. Key microbial traits, including Bacteria_Positive and Mean_Glucose, and chemical features like SOC 

and Alkane, were found to be influential. SHAP analysis provided transparency in model predictions, 

uncovering complex relationships between soil properties and microbial respiration. These insights can inform 

soil management practices and climate adaptation strategies. Future research could focus on incorporating 

physical and hydraulic soil properties to refine Q10 predictions for specific ecological conditions. 
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  های کلیدی:واژه

  ن،یماش یریادگی

 خاک،  یکروبیجامعه م

  م،یاقل رییتغ

 .ریپذحیتوض یهوش مصنوع

 بیبه دما که با ضر یکروبیتنفس م تیحساس قیاز طر ژهیوبر عملکرد خاک دارد؛ به یااثرات گسترده میاقل رییتغ
 ییکارا یابیو ارز بیضر نیعوامل مؤثر بر ا ییپژوهش با هدف شناسا نی. اشودیم دهیسنج  (Q10) ییدما تیحساس
کشور جهان  29نمونه خاک از  332مربوط به  یهاادهمطالعه از د نیانجام شد.در ا نیماش یریادگی یهاتمیالگور

شامل جنگل  تمی. شش الگوردیگرد یبندطبقه ادیدر سه سطح کم، متوسط و ز ییدما تیحساس بیاستفاده شد و ضر
 هیچندلا یو شبکه عصب یانیگراد تیتقو ک،یلجست ونیرگرس ،یگیهمسا نیترکینزد بان،یبردار پشت نیماش ،یتصادف

و سطح  (ROC) رندهیمشخصه عملکرد گ یمنحن ریدقت، سطح ز یهاها با شاخصکار گرفته شدند. عملکرد مدلبه
را داشته است؛  ییکارا نیبالاتر ینشان داد جنگل تصادف جیشد. نتا سهیمقا (PRC) یبازخوان–دقت یمنحن ریز

 ± 7530/0برابر با  PRC مقدار و 080/0 ± 8150/0برابر با   ROCمقدار ،1170/0 ± 0که با دقت / یاگونهبه
 ریپذحیتوض یهوش مصنوع کردیعنوان روبه  SHAPاز روش جینتا ریتفس یداشت. برا یها برترمدل ریسا بر 0960/0

 بیعوامل مؤثر بر ضر نیترخاک مهم یو شور یقارچ یاز گلوکز، غنا ینشان داد تنفس ناش لیتحل نیاستفاده شد. ا
توان  ،یکروبیو م یخاک یهایژگیو یبیروشن از نقش ترک یریبا ارائه تصو هاافتهی نیهستندد. ا ییدما تیحساس
 .دهندینشان م یجهان شیپاسخ خاک به گرما لیرا در تحل ریپذحیتوض یهاو روش نیماش یریادگی یهاتمیالگور
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 دمه مق

 یبرجا های طبیعی و انسانیکه پیامدهای عمیقی بر اکوسیستم رودیویکم به شمار مهای اساسی قرن بیستیکی از چالش میاقلرییتغ
گیرد. افزایش دما تأثیر گرمایش جهانی قرار میتحت مایزیست، مستقترین اجزای محیطعنوان یکی از مهماین میان، خاک به. در گذاردیم

های فیزیکی، شیمیایی و زیستی خاک را دگرگون ساخته و عملکردهای کلیدی آن تواند ویژگیمی میاقل رییو نوسانات بارشی ناشی از تغ
 . (Allen et al., 2011; Lal, 2011) دهد مانند چرخه کربن را تغییر

های بیوژئوشیمیایی مانند چرخه کربن نقشی بنیادین ها، در چرخهها و سایر میکروارگانیسمها، قارچمیکروبیوم خاک، شامل باکتری
ای شده و گازهای گلخانه ها، تنفس میکروبی است که طی آن مواد آلی اکسیدکنند. یکی از فرآیندهای اصلی این میکروارگانیسمایفا می
پذیری عنوان معیاری برای سنجش واکنشبه )10Q( ییدما تیحساس بیضرتأثیر دما قرار دارد و  شود. این فرآیند تحتآزاد می 2CO همچون

 یری ماشینهای یادگهای اخیر، روشدر سال. (Patil and Lamnganbi, 2018; Haaf et al., 2021)رود می کاربه گرمایش بهنسبت آن 

(Machine Learning) ها در این روش کارگیریاند. بهای مورد توجه قرار گرفتهطور فزایندهبعدی به های پیچیده و چندتحلیل داده برای
تر الگوهای واکنش خاک ، به درک عمیق(Explainable Artificial Intelligence; XAI) ترکیب با ابزارهای هوش مصنوعی قابل توضیح

تمرکز  ییدما تیحاس بیضری افراط ریمقادهای پیشین فقط بر ها، بسیاری از پژوهشکند. با وجود این پیشرفتدر برابر گرمایش کمک می
 .اندهای میانی را نادیده گرفتهو داده کرده

 تنفس یریپذواکنش یابیکلیدی برای ارز یشاخصای دارد و سازی چرخه کربن خاک کاربرد گستردهدر مدلیی دما تیحساس بیضر
دهد. مطالعات دهد که چگونه افزایش دما نرخ تنفس میکروبی را تغییر مینشان می بیضر نی. اشودیم محسوب دما به نسبت یکروبیم

ترکیب جامعه میکروبی، کیفیت مواد آلی دما، رطوبت، همچون ای تابعی از عوامل پیچیده ضریب حساسیت دمایی اند کههبیان کردنظری 
  (Winkler et al., 1996; Mahecha et al., 2010) .است C:N و نسبتکربن آلی خاک ،  pHهای فیزیکوشیمیایی خاک نظیرو ویژگی

رابطه  هوش مصنوعی توضیح پذیر، هایاز یادگیری ماشین و روشاستفاده با  (Saez-Sandino et al., 2023)ی جدید در مطالعه
ضریب حساسیت  های بالا و پایینهای مربوط به دهکداده در این پژوهشد. شبررسی بی و ضریب حساسیت دمایی های میکرومیان ویژگی

د. این مطالعه را کاهش داپذیری آن دقت مدل را افزایش داد، اما توان تعمیم رویکردد. گرچه این گردیهای میانی حذف و داده حفظ  دمایی
 .که ساختار میکروبی یکی از عوامل اصلی در واکنش خاک به گرمایش است دنشان دا

 Haaf) (. برای مثال،اندهبررسی کرد گوناگوندر شرایط اقلیمی و زیستی  نیز ضریب حساسیت دمای راهای تجربی متعددی پژوهش

et al.,2021 لاتر میکروبی بیشتر است. همچنینفعالیت با دلیلدر مناطق مرطوب بهضریب حساسیت دمایی  ند کهگزارش کرد(Meyer et 

al., 2018)   سایت اروپایی نشان دادند که عواملی مانند 90با مطالعه برpH ، SOC  این  کنندهترین متغیرهای تعیینمهماز و دمای سالانه
عنوان سازوکار ارتفاعات بالاتر بهرا در  ضریب حساسیت دمایی های آند پرو افزایشدر جنگلNottingham et al., 2015) ). هستندضریب 

ضریب  ای در مقیاس جهانی، نوعی همگرایی درمطالعه درMahecha et al., 2010)  (. افزون بر این، تطبیقی جوامع میکروبی تفسیر کردند
 .را گزارش کردندحساسیت دمایی 

های بررسی کرده و نشان دادند که مدیریتایی ضریب حساسیت دم کاربری زمین را بر راث Tong et al., 2021)) ر گید پژوهشیدر 
برداری کردند که فصل نمونه تأکید (Yang et al., 2022) تواند ترکیب میکروبی و حساسیت آن را به گرما تغییر دهد. همچنینمختلف می
  روند.این ضریب به شمار می ها، از عوامل کلیدی در تبیین تغییرپذیریهای زیستی میکروبو استراتژی

 یجهان یکروبینشان دادند که جامعه م (Crowther et al. 2019) نمونه، عنوانبه .اندداده گسترش را موضوع نیا زین دتریمطالعات جد
 شدتبه هاجنگل در ییدما تیحساس که کردند گزارش زین. (Ahrens et al. 2020) است کربن چرخه در یاصل یهاکنندهنییتع از یکی

 همزمان کنشبرهم که کردند دیتأک  (Xu et al. 2021)ن،یا بر افزون. دارد قرار خاک ییایمیش یهایژگیو و یکروبیم تنوع ریتأث تحت
 .کندی ضریب حساسیت دمایی ایفا میریرپذییتغ در یاساس نقش ،یستیز و یکیزیف ،ییایمیش عوامل

های پیشین تنها بر مقادیر بسیاری از پژوهشنخست، مانده است.  برجایخلأ علمی مهم  ینچند همچنانبا وجود این شواهد، 
تر از بینانهواقع یها برای ترسیم تصویراند، در حالی که این دادههای میانی نادیده گرفتهتمرکز کرده و داده ضریب حساسیت دمایی افراطی

اند، در زیستی یا شیمیایی ـپرداختهی هاگی، بیشتر مطالعات صرفاً به بررسی یک دسته از ویژدوماند. واکنش خاک به گرمایش ضروری
ها در ، اغلب پژوهشسومحالی که حساسیت دمایی تنفس میکروبی حاصل تعامل پیچیده میان عوامل زیستی، شیمیایی و فیزیکی است. 
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ست. این خلأها موجب شده پذیر نیسادگی به سطح جهانی تعمیماند و نتایج آنها بههای خاص انجام شدهای یا اکوسیستمهای منطقهمقیاس
سرعت در حال تشدید و در شرایطی که گرمایش جهانی به ؛ همچنان ناقص باقی بماند ضریب حساسیت دمایی شناخت ما از دینامیک

 .های اقلیمی به همراه داشته باشدبینی چرخه کربن جهانی و تدوین سیاستتواند پیامدهای جدی برای پیشمیاین کاستی است، 

 تحقق یبرا. است ادیدر سه سطح کم، متوسط و ز ییدما تیحساس بیضر ینیبشیپژوهش حاضر پ یاساس، هدف اصل نیبر هم
اند تا علاوه بر کار گرفته شدهبه  (XAI) ریپذحیتوض یمصنوع هوش یهاروش با بیترک در نیماش یریادگی یهاتمیالگور هدف، نیا

های زیستی )مانند تنوع میکروبی و تنفس . در این چارچوب، دادهشود فراهم زین مؤثر عوامل نقش در تیشفاف ،ینیبشیپ دقت شیافزا
طور همزمان وارد مدل شدند تا اثرات و فیزیکی )مانند رطوبت و بافت خاک( به( SOC و pH مانند) شیمیاییهای دادهالقاشده با گلوکز(، 
د. افزون گردیتلف با استفاده از اعتبارسنجی متقابل تودرتو ارزیابی و مقایسه د. همچنین، عملکرد چندین الگوریتم مخشوترکیبی آنها آشکار 

 جامع، کردیرو نیکار گرفته شد. اای بهسازی سهم هر متغیر و کشف روابط خطی، غیرخطی و آستانهبرای شفاف SHAP بر این، تحلیل
 اسیدر مق ییدما تیحساس بیضر کینامید از تریکاربرد و ررتیپذمیتعم یریتصو تواندیم و دهدا وششپ را نیشیپ مطالعات یعلم شکاف

 .دهد ارائه یجهان

 شناسی پژوهشروش

 هاداده یگردآور

های خاک . این پایگاه  شامل نمونهدانلود شده استFigshare ، از پایگاه داده عمومی  (1جدول ) پژوهشهای مورد مطالعه در این ویژگی
های خاک در سراسر جهان ارائه و هوایی و ویژگیآب متنوعو نمای کلی از شرایط  (Saez-Sandino et al., 2023)کشور است  29 از

 .دهندمی
 متغیرهای ورودی مورد استفاده در تحلیل .1جدول 

 نام ویژگی معادل فارسی دواح
 Longitude_c جغرافیایی طول -

 Forest جنگلی پوشش وجود -

 MAP_wc2 سالانه بارندگی میانگین مترمیلی

 MAT_wc2 سالانه دمای میانگین گرادسانتی
 Plant_richness گیاهی هایگونه تعداد -
 Plant_cov_er_v3 اندکرده نفوذ خاک در که گیاهانی پوشش نسبت -
- pH خاک Soil_pH 

 Soil_salinity خاک الکتریکی هدایت زیمنس بر متردسی
 Fine_texture خاک در سیلت و رس خاک گرم صد  در گرم

 Soil_P خاک کل فسفر گرم فسفر در کیلوگرم خاک خشکمیلی
 Soil_CN کل نیتروژن به کل آلی کربن نسبت -

 SOC خاک آلی کربن گرم کربن در کیلوگرم خاک
 MAOC/POC_Ratio  معدنیبه کربن آلی کربن نسبت -

 Aromatic آروماتیک ترکیبات درصد

 Alkanes هاآلکان درصد

 Polysaccharide ساکاریدهاپلی درصد

 Amide آمیدها درصد

کربن در هر -اکسیددیمیکروگرم کربن
 گرم خاک در ساعت

 Mean_Glucose گلوکز توسط القاشده خاک تنفس

 Richness_bacteria هاباکتری غنای شدهنرمال OTU تعداد
 Richness_fungi هاقارچ غنای شدهنرمال OTU تعداد
 Richness_protist هاپروتیست غنای شدهنرمال OTU تعداد

 Q10 Bacteria_Negativeباکتری دارای ارتباط منفی با  هایگونه استاندارد درصد

 Q10 Fungi_Negativeدارای ارتباط منفی با  قارچی هایگونه استاندارد درصد

 Q10 Protists_Negativeدارای ارتباط منفی با  پروتیستی هایگونه استاندارد درصد

 Q10 Bacteria_Positiveدارای ارتباط منفی با  باکتریایی هایگونه استاندارد درصد

 Q10 Fungi_Positiveدارای ارتباط منفی با  قارچی هایگونه استاندارد درصد

 Q10 Protists_Positiveدارای ارتباط منفی با  پروتیستی هایگونه استاندارد درصد
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، انواع مختلف گرادسانتی 30تا  -7میانگین دمای سالانه در محدوده  از جمله ؛از عوامل محیطی ی گستردهداده شامل طیفمجموعه 
متفاوت شناسایی شد که عوامل  هایبا ماهیت یژگیو 27خاک است. برای هر نمونه خاک، صوصیات شیمیایی و فیزکی پوشش گیاهی و خ

همراه  ضریب حساسیت دماییدهد. هر نمونه خاک با مقدار یوشیمیایی، کمیت بستر را پوشش میمحیطی، میکروبیوتای خاک، مقاومت ب
ای گونهبه ؛اندجدول سازماندهی شدهیک ارائه می دهد. این اطلاعات در قالب  ایشبه گرمنسبت حساسیت تنفسی خاک از  یریتصو و است
 قیصورت آزاد از طرپژوهش به نیا یها)داده خاک استهای ی از ویژگیکو هر ستون نشان دهنده ی صیک نمونه خابیانگر هر ردیف که 

(، کاربری اراضی، متغیرهای و شیمیایی عوامل محیطی شامل متغیرهای خاک )خصوصیات فیزیکی در دسترس هستند(. Figshare گاهیپا
، طول جغرافیایی، وجود جنگل، میانگین بارندگی سالانه، میانگین مشخصبه طور  ند.محل نمونه برداریجغرافیایی هواشناسی و موقعیت 

بر اساس ) C:N، فسفر کل خاک و نسبت خاک سیلتو  ، هدایت الکتریکی، درصد رسpHپوشش گیاهی، نوع دمای سالانه ، غنای گیاهی، 
مقاومت بیوشیمیایی شامل درصد آروماتیک، ای هشاخص. (Nottingham et al., 2015)گیرند در این دسته قرار می (کربن آلی و نیتروژن کل

های داده. همچنین شودبه کربن معدنی میو نسبت کربن آلی  خاکآلکان، پلی ساکارید و آمید است. مواد معدنی شامل نسبت کربن آلی 
، (یست توده میکروبیبه عنوان شاخص کل ز)نیز شامل میانگین تنفس خاک ناشی از گلوکز  (Winkler et al., 1996)میکروبیوم خاک 

پروتیست  و باکتریایی، قارچی هایهاستاندارد شده از گونهای ها است. در نهایت در این مطالعه نسبتپروتیستو  هاها، قارچغنای باکتری
 امکان هاشاخص از متنوع مجموعه نیا بیترک. استهدارای ارتباط مثبت و منفی هستند نیز اندازه گیری شد  ضریب حساسیت دماییکه با 
 .سازدیم فراهم را آن بر مؤثر یدیعوامل کل ییو شناسا ییدما تیحساس بیضر بر گوناگون یرهایمتغ اثر جامع یبررس

 هاداده پردازششیپ

تا از یکپارچگی و شدند های خاک بازبینی قرار زیستی، فیزیکی، شیمیایی و اقلیمی نمونه متغیرهایهای خام شامل در گام نخست، داده
ضریب  تر، مقادیر اولیهبینانهمیانی و دستیابی به مدلی واقع هایدادهپرهیز از حذف  برایاطمینان حاصل شود.  گمشدههای پرت یا نبود داده

 33های کبر اساس صد پژوهش نیا سندگانیتوسط نو(  Saez-Sandino et al., 2023؛یشده از پایگاه داده عمومدریافت) حساسیت دمایی
 فراهم شیگرما بهخاک  یکروبیم پاسخ از تریپیوسته لیتحل امکان کلاسهسه یبنددسته نیی مجزا تقسیم شدند. ابه سه دسته 66و 

 (Steyerberg, 2019; Ibrahimi et al., 2023) .ساخت 

 نیماش یریادگی یهاتمیالگور

 شد استفاده نیماش یریادگی یهاتمیاز الگور یاعوامل مؤثر، از مجموعه ییو شناسا ییدما تیحساس بیضر ریمقاد ینیبشیپ یبرا

های ماشین.اند. با ابعاد بالا شناخته شده ییبندهای قدرتمندی هستند که به دلیل اثربخشی در فضاهاطبقه (SVM) بانیپشت بردار یهانیماش.
  کندهای مختلف ایجاد میفضا با ابعاد بالا برای جداسازی کلاس ها را در یکای از ابرصفحهیک ابرصفحه یا مجموعه بردار پشتیبان

(Cortes and Vapnik 1995) .ای، تابع پایه شعاعی و سیگموید( و پارامترهای های مختلف )خطی، چندجملهبا استفاده از هسته این مدل
 :بررسی شدسازی عملکرد مدل سازی مختلف برای بهینهمنظم

• C ∈ {1.0, 0.1, 0.01, 0.5} 

• kernel ∈ {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’} 

بندی است. این الگوریتم یک نقطه یک روش غیرپارامتریک برای طبقه (K-Nearest Neighbors)ی گیهمسا نیترکینزد الگوریتم
با استفاده از تعداد مختلفی از  . عملکرد مدل راGuo et al., 2003)) کندبندی میداده را بر اساس اکثریت کلاس همسایگان آن طبقه

 شد:گذاری ارزیابی همسایگان، معیارهای فاصله و توابع وزن
• n_neighbors ∈ {3, 5, 7, 9, 11} 
• weights ∈ {‘uniform’, ‘distance’} 
• metric ∈ {‘euclidean’, ‘manhattan’} 

 
ها را شود و احتمال تعلق یک نمونه به هر یک از کلاسبندی استفاده مییک مدل خطی است که برای طبقه کیلجست ونیرگرس

 C مورد بررسی قرار گرفتند. علاوه بر این، پارامتر ElasticNet و L1، L2 ها از جملهجریمهکند. در این تحقیق، انواع مختلف بینی میپیش

 .(LaValley 2008) شدندنیز به دقت تنظیم  solvers و انواع
• penalty ∈ {‘l1’, ‘l2’, ‘elasticnet’} 
• C ∈ {1.0, 0.1, 0.01, 0.5} 
• solver ∈ {‘lbfgs’, ‘liblinear’, ‘saga’} 
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 رودکار میبندی و رگرسیون بهشده غیرپارامتریک است که برای انجام وظایف طبقهیک تکنیک یادگیری نظارت میمدل درخت تصم
(Swain and Hauska 1977)های داده گیری ساده از ویژگیبینی مقدار یک متغیر هدف با استخراج قوانین تصمیم. هدف این مدل، پیش

شود. ها میهای داخلی و برگها، گرهمانند است که شامل گره ریشه، شاخهمراتبی و درختاست. ساختار درخت تصمیم به صورت سلسله
 :استفاده از گرید جستجو تنظیم شدندهایپرپارامترهای درخت تصمیم با 

• max_depth ∈ {None, 3, 5, 7, 9}, 
• criterion ∈ {‘gini’, ‘entropy’, ‘log_loss’}. 

کند تا یک مدل های فردی مختلف را ترکیب میبندی جنگل تصادفی یک الگوریتم یادگیری ماشین است که مدلالگوریتم طبقه
های تصمیم ساخته شده است. هر درخت تصمیم با استفاده از یک ای از درختتصادفی از مجموعه تر ایجاد کند. جنگلتر و دقیققوی

استفاده  "استرپینگبوت"شود. این الگوریتم از تکنیکی به نام ها ساخته میهای آموزشی و انتخاب تصادفی ویژگیزیرمجموعه از داده
کند. هر زیرمجموعه برای آموزش یک های آموزشی ایجاد میموعه تصادفی از دادهبرداری با جایگزینی، چندین زیرمجکند که با نمونهمی

ها برای انجام در هر گره از درخت تصمیم، به جای در نظر گرفتن همه ویژگی Breiman 2001)) شود.درخت تصمیم جداگانه استفاده می
ها و کاهش کند. این کار به کاهش همبستگی بین درختاب میها را انتخطور تصادفی یک زیرمجموعه از ویژگیتقسیم، جنگل تصادفی به

برازش کند که باعث کاهش بیشهای چندین درخت را ترکیب میبینیکند. جنگل تصادفی پیشها کمک میحساسیت آنها به نویز در داده
 :شودپذیری میو بهبود عملکرد تعمیم

• n_estimators ∈ {100, 200} 
• max_depth ∈ {None, 5, 10} 

رود. این الگوریتم از کار میبندی بهیک الگوریتم یادگیری ماشین ترکیبی است که برای وظایف طبقه یفوق تصادف یهادرختمدل 
کند. مانند دیگر سازی استفاده میکند و برای بهبود عملکرد و کاهش واریانس، از تصادفیهای مبتنی بر درخت تصمیم استفاده میروش

های آموزشی سازد. هر درخت بر روی یک زیرمجموعه تصادفی از دادهای از درختان تصمیم میمجموعهاین مدل ترکیبی،  هایالگوریتم
های تقسیم و سازی گرهتصادفی با استفاده ازکند. های تصادفی استفاده میها از انتخاب ویژگیشود و برای تقسیم گرهآموزش داده می

نسبت به درختان تصمیم  حساسیت کمتریبرازش در برابر بیشهای فوق تصادفی درخت ها،ادفی از دادههای تصاستفاده از زیرمجموعه
هایی قادر است دادهاین مدل   .کندها دارای نویز یا واریانس بالایی هستند، بسیار مفید می. این ویژگی آن را در شرایطی که دادهدارند سنتی

. در نهایت، فرآیند ((Geurts et al., 2006 خوبی برای مسائل پیچیده مناسب استر پردازش کند و بهطور مؤثبا تعداد زیادی ویژگی را به
 :کندها به ارزیابی اهمیت هر ویژگی در مدل کمک میانتخاب ویژگی در حین ساخت درخت

• n_estimators ∈ {100, 200} 
• max_depth ∈ {None, 10, 20} 
• min_samples_split ∈ {2, 5, 10} 
• criterion ∈ {'gini', 'entropy'} 

شود که می به عنوان یک الگوریتم یادگیری ماشین پرکاربرد شناخته (Extreme Gradient Boosting) شده تیتقو انیگراد مدل
کاوی و یادگیری ماشین ی دادههااش در انجام رقابترود. این الگوریتم به دلیل توانمندیبندی به کار میبرای حل مسائل رگرسیون و طبقه

پذیری و های انعطافدهد. ویژگیهای داده از خود نشان میهای مختلف مسائل و مجموعهای را در زمینهشهرت دارد و عملکرد برجسته
به عنوان یک . (Chen and Guestrin,2016) کندها ضروری میآن را برای پردازش حجم زیادی از داده گرادیان تقویت شده پذیریمقیاس

دارد. با ساختن  (Gradient Boosting) های افزایشیهایی نسبت به الگوریتمپیشرفت گرادیان تقویت شدهروش یادگیری تجمیعی، 
بینی مدل را تقویت توان پیش مدل گرادیان تقویت شدهبینی نهایی سهیم است، ای از درختان تصمیم، که هر درخت در پیشمجموعه

است که به ارزیابی مدل و تنظیم پارامترها کمک  این مدلهای داخلیاز ویژگی (cross-validation) ارزیابی متقابل داخلیکند. قابلیت می
کنند، ها اشتباهات یکدیگر را اصلاح میکه مدل گرادیان تقویت شده کند تا عملکرد بهینه حاصل شود. علاوه بر این، روش تجمیعیمی

های . همچنین، استفاده از تکنیک(Aydın et al., 2023) آوردهای دیگر به ارمغان میبه بسیاری از الگوریتمبینی بالاتری نسبت دقت پیش
 :های جدید سازگار شودتواند به دادهکند، به طوری که مدل میکمک می برازشبیش به مقابله با چالش (regularization) سازیمنظم

• max_depth ∈ {None, 3, 5, 7, 9} 
• n_estimators ∈ {50, 100, 150, 200, 250} 

های یادگیری که در این مطالعه استفاده شد، مدل Multi-layer Perceptron (MLP) با ساختار (ANN) یمصنوع یعصب یهاشبکه
ها شامل لایه های متوالی نورونها از لایهسازی روابط پیچیده غیرخطی بین متغیرها را دارند. این شبکهعمیقی هستند که توانایی مدل
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 .های لایه بعدی متصل استازی با نورونسها و تابع فعالاند. هر نورون از طریق وزنهای پنهان و لایه خروجی تشکیل شدهورودی، لایه
خاک به کار رفت. از آنجا  ییدما تیحساس بیضرر بینی مقادیکننده غیرخطی برای پیشبندیعنوان طبقهبه هیچندلا یعصب شبکهمدل 

بندی شدند. ی مقیاسسازهای ورودی با استفاده از استانداردسازی و نرمالها حساس هستند، ویژگیهای عصبی به مقیاس ویژگیکه شبکه
سازی و ها، تابع فعالها، تعداد لایهبرازش و بهبود عملکرد، تنظیم دقیق پارامترهایی همچون تعداد نورونهمچنین، برای جلوگیری از بیش

توانند در مسائل میهای عصبی پس از تنظیم بهینه، مطابق با مطالعات پیشین، شبکه (.(Novielli et al., 2024 نرخ یادگیری انجام شد
 :بندی چندکلاسه عملکرد رقابتی و قابل توجهی داشته باشندطبقه

• hidden_layer_sizes ∈ {(50,), (100,), (50, 50), (100, 50)} 
• activation ∈ {'relu', 'tanh', 'logistic'} • solver ∈ {'adam', 'sgd', 'lbfgs'} • alpha ∈ {0.0001, 0.001, 0.01} 
• learning_rate ∈ {'constant', 'adaptive'} 

 (K=10)بخش  10 با (nested cross-validation) برای اطمینان از پایداری و استحکام نتایج، یک روش اعتبارسنجی متقابل تودرتو
سنجی انجام گرفت. پس از های یادگیری ماشین در حلقه داخلی اعتبارسازی شد. در این فرآیند، تنظیم پارامترهای مدلتکرار پیاده 20و با 

سازی شده و جهت تأثیر آن مشخص ها شفافبینی کلاسمحاسبه گردید تا میزان تأثیر هر متغیر در پیش SHAP انتخاب مدل بهینه، مقادیر
 .شود

 یبرا xgboost ،یسازمدل یبرا scikit-learn یهااز کتابخانه یریگ( و با بهره12.3)نسخه  تونیپا طیدر مح هالیتحل یتمام
 میها، تنظمدل نیاز ا کیهر  یانجام گرفت. برا حیقابل توض یهوش مصنوع لیتحل یبرا shapو  یانیگراد تیتقو تمیالگور یسازادهیپ

انجام  یدر درون حلقه اعتبارسنج  (GridSearchCV) مشبک یوجوبا استفاده از شبکه جست (hyperparameter tuning) پارامترها قیدق
، StandardScaler  ،MinMaxScaler ،RobustScaler جمله از مختلف یهایبنداسیمق با هاداده مدل، عملکرد بهبود یبرا نینهمچ.شد

MaxAbsScaler ،Normalizer ،PowerTransformer  و QuantileTransformer یبنداسیمق نیا. دندیگرد یسازنرمال( نرمال عی)با توز 
 .شود انتخاب یبنداسیمق نیبهتر تا شد انجام هامدل همه یبرا

 هامعیارهای ارزیابی عملکرد مدل

معیارهای ارزیابی ابزارهای مهمی برای  .دیگرد استفاده یبندطبقه استاندارد یارهایمع از ها،مدل نانیاطم تیقابل و دقت یابیمنظور ارزبه
این معیارها مقادیر کمی هستند که به ارزیابی عملکرد مدل  (.Ferrer, 2022) های یادگیری ماشین هستندارزیابی عملکرد و اثر بخشی مدل

 (، مساحت زیر منحنی مشخصه1)رابطه  دقتشامل بندی ترین معیارهای ارزیابی در تحلیل طبقهکنند. رایجدر یک وظیفه خاص کمک می
 هستند.  (Precision-Recall)یادآوری -و مساحت زیر منحنی دقت (Receiver Operating Characteristic)گیرنده  عملیاتی

ACC (1رابطه  =
TP + TN

TP + FP + TN + FN
 

 
های تعداد نمونه TN (True Negatives)، شدهبندیدرستی طبقههای مثبت بهتعداد نمونه TP (True Positives)در محاسبه دقت، 

 FN (Falseو  اندشدهبندیهای منفی که به اشتباه مثبت طبقهتعداد نمونه FP (False Positives)، شدهبندیدرستی طبقهمنفی به

Negatives) اندشدهبندیکه به اشتباه منفی طبقههستند های مثبت تعداد نمونه . 
بندی های طبقهکه برای سنجش اثربخشی مدل استابزارهای ارزیابی از  (ROC)گیرنده  عملیاتی مساحت زیر منحنی مشخصه

های واقعی( در های واقعی( و ویژگی )منفییک نمایش گرافیکی از چگونگی تغییر حساسیت )مثبت ROC روند. منحنیکار میدودویی به
این . دهدنشان می های مثبت و منفی توسط مدل راهای مختلف است. در واقع، این منحنی تعادلی بین شناسایی دقیق نمونهآستانه
دهد، عملکرد عالی مدل را نشان می 1مقداری نزدیک به  .کندکمی می ROC گیری مساحت زیر منحنیعملکرد کلی مدل را با اندازهپارامتر

بندی بقهبندی تصادفی است. به طور خلاصه، این معیارها برای ارزیابی و مقایسه توانایی طدهنده طبقهنشان 0.5در حالی که مقدار حدود 
 .((Ozenne et al., 2015 های دودویی ضروری هستندمدل

رابطه بین   PRC . منحنیاستبندی دودویی های طبقهارزیابی عملکرد مدلاز ابزارهای  (PRC)یادآوری -دقت مساحت زیر منحنی
دهد. دقت معیاری است که نشان ان میگیری را نشهای مختلف تصمیمهای واقعی( و بازخوانی )حساسیت( مدل در آستانهدقت )نرخ مثبت

اند، چه میزان واقعاً مثبت هستند، در حالی که بازخوانی معیاری است که نشان بندی شدهعنوان مثبت طبقههایی که بهدهد از تعداد نمونهمی
 اند. مساحت زیر منحنیی شدهدرستی توسط مدل شناسایهای مثبت واقعی موجود در مجموعه داده، چه میزان بهدهد از تعداد نمونهمی
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PRC دهنده عملکرد بهتر است، تر نشانشده از عملکرد مدل در رابطه با دقت و بازخوانی است. مساحت بزرگگیری تجمیعیک اندازه
 . (Wen et al., 2024) به مدل کاملاً درست اشاره دارد 1که حداکثر مساحت برابر با طوریبه

 رویکرد هوش مصنوعی قابل توضیحشناسایی عوامل کلیدی با 

هوش مصنوعی  .شد گرفته بهره حیتوض قابل یمصنوع هوش کردی، از روییدما تیحساس بیضر بر مؤثر یدیعوامل کل ییشناسا یبرا
ها برای کند مدلهای هوش مصنوعی مطرح است که اطمینان حاصل میعنوان یک پیشرفت اساسی در سیستمبه (XAI) قابل توضیح

 SHAP مقادیرشود. استفاده می اهمیت ویژگیو  SHAP معمولاً هوش مصنوعی قابل توضیح . درا قابل درک و تفسیر باقی بمانندهانسان

از  jبرای ویژگی  SHAP مقدار. Lundberg and Novielli et al., 2024)) دهندهای ارزشمندی در مورد دلایل نتایج مدل ارائه میبینش
 :شودزیر محاسبه می (2)رابطه  های ممکن بر اساس فرمولتمام مجموعهبا تجمیع آن در  xنمونه 

 (2رابطه 
Φ𝑗(𝑥) = ∑

|F|! (|S|  −  |F|  −  1)!

|S|!

 

F⊆S−{j}

 [ fx(F ∪  j)  −  fx(F)] 

 S − (F ها در زیرمجموعههای ویژگیتعداد ترتیب !F ،F, (|S| − |F| − 1)ها در زیرمجموعه های ویژگیتعداد ترتیب !∣F∣، در اینجا

∪ {j})  و∣S∣! ها، دار میان آنهای معنیها و بررسی تفاوتدر انتها برای مقایسه دقت مدل. دهدها را نشان میهای ویژگیتعداد کل ترتیب
باشد،  0.05کمتر از  ANOVA آمده از آزموندستبه p-valueاستفاده شد. در صورتی که  (ANOVA) طرفهاز آزمون تحلیل واریانس یک

 . شودها تایید میدار بین مدلتفاوت معنی

 نتایج
عملکرد طور کلی ، بهشدههای فوق تصادفی، و تقویت گرادیان بهینهجنگل تصادفی، درخت ویژههای ترکیبی، بهکه مدل نتایج نشان داد

( 653/0 ± 117/0دفی )(. بالاترین دقت مربوط به مدل جنگل تصا2جدول ها دارند )نسبت به سایر مدل PRCو  ROCدقت،   نظراز بهتری 

را داشتند. 641/0 ± 105/0و  642/0 ± 112/0هایشده به ترتیب دقتهای فوق تصادفی و تقویت گرادیان بهینهبود، پس از آن مدل درخت

و SVM (148/0 ± 641/0) ،KNN (138/0 ± 589/0 ) (،606/0 ± 088/0)درخت تصمیم های غیرترکیبی همچون مدلدر مقابل، 

( 700/0 ± 100/0های عصبی )همچنین کمترین دقت در شبکه تری داشتند.عملکرد ضعیف( 647/0 ± 093/0لجستیک )رگرسیون 
 مشاهده شد.

 
 تکرار 20 با یامرحله 10متقاطع  یاعتبارسنج به روش نیماش یریادگی هایمدلعملکرد  نیانگیم .2جدول 

  مدل  ROC PRC دقت

 بانیپشت بردار نیماش 641/0 ± 138/0 729/0 ± 099/0 807/0 ± 080/0 641/0 ± 138/0

 یگیهمسا نیترکینزد 589/0 ± 138/0 /672 ± 122/0 762/0 ± 102/0 589/0 ± 138/0

 کیلجست ونیرگرس 647/0 ± 093/0 710/0 ± 082/0 802/0 ± 072/0 647/0 ± 093/0

 یتصادف جنگل 653/0 ± 117/0 753/0 ± 096/0 815/0 ± 080/0 653/0 ± 117/0

 شدهنهیبه انیگراد تیتقو 641/0 ± 105/0 729/0 ± 091/0 804/0 ± 069/0 641/0 ± 105/0

  میتصم درخت 606/0 ± 088/0 618/0 ± 073/0 762/0 ± 058/0 606/0 ± 088/0

 یفوق تصادف یهادرخت 642/0 ± 112/0 778/0 ± 096/0 838/0 ± 071/0 642/0 ± 112/0

 یهچندلا یشبکه عصب 594/0 ± 115/0 700/0 ± 100/0 781/0 ± 073/0 594/0 ± 115/0

 
 20ها با دادهبار تقسیم تصادفی  10های فوق تصادفی با استفاده از ( برای مدل درخت1)شکل  PRCو منحنی  ROCنمودار منحنی 

 MinMaxScalerبندی های فوق تصادفی با مقیاسبرای مدل درخت PRCو  ROCمقدار  گردید. جهت ارزیابی عملکرد مدل رسم تکرار
بینی صحیح طبقات بر اساس مقادیر دهنده توانایی بالای مدل در پیشنشانبود که  778/0 ± 096/0و  838/0 ± 071/0به ترتیب برابر با 

 ± PRC (080/0و  ROC (096/0 ± 753/0)های فوق تصادفی، مدل جنگل تصادفی بالاترین پس از مدل درخت .باشدمی Q10مختلف 
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 ( در درخت تصمیم مشاهده شد. 073/0 ± 618/0) PRC( در و کمترین 058/0 ± 762/0) ROCداشت. همچنین کمترین  (815/0

 

 
 . PRC (b)یادآوری -و منحنی دقت ROC (a) منحنی مشخصه عملیاتی گیرنده. 1شکل 

 

با ساختن   SHAP مقادیر(. 2رسم شد )شکل  SHAPو روش  شدهتقویت گرادیان بهینهها با استفاده از مدل نمودار اهمیت ویژگی
       ترین متغیرها از نظر الگوریتممهم لیتحل نیا درزنند. نه، اهمیت هر ویژگی را به طور محلی تخمین میهای ساده اطراف هر نمومدل

SHAP  یکروبی ناشی از گلوکمتنفس در هر دو روش ویژگی  .شودها مشخص میبندی نمونهبرای طبقه( زMean_Glucose ) بیشترین
خاک، بافت خاک  pHوکز، شامل تنفس القاشده با گلبه ترتیب در مدل چهار ویژگی اصلی  داشت.یی دما تیحساس بیضرنقش را در تعیین 

بینی حساسیت دمایی تنفس میایی نقش غالبی در پیشهای زیستی و شیدهند که ویژگیها نشان میو غنای قارچی بودند. این ویژگی
  .میکروبی دارند

 

 

 
 SHAP (b)ها با ت ویژگیو نمودار اهمی (a)شده ها با مدل تقویت گرادیان بهینه. نمودار اهمیت ویژگی2شکل 

 

و غنای قارجی، نشان داد که شوری خاک نیز  زتنفس میکروبی ناشی از گلوک تأیید نقش کلیدیعلاوه بر  SHAPدر مقابل تحلیل 
دهنده تأثیر بالقوه نشان SHAPدر  عنوان یک عامل مهمحضور شوری بهاهمیت بالایی در تعیین حساسیت میکروبی خاک به دما دارد. 
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ات غیرخطی یا وابسته ها ممکن است اثرهای یونی بر عملکرد میکروبی است. تفاوت بین دو تحلیل بیانگر این است که برخی ویژگیتنش
 . ها داشته باشندبه تعامل با دیگر ویژگی

 SHAP دهند که متغیرهای میکروبی دارای ارتباط مستقیم با مقادیرنشان می( 3)شکل  SHAP نمودارهای وابستگی حاصل از تحلیل

ها در گروه بندی نمونهدر نتیجه، احتمال طبقهنیز افزایش یافته و  SHAP رها، مقادیرعبارت دیگر، با افزایش مقادیر این متغیهستند. به
یابد. این روند بر نقش کلیدی متغیرهای مربوط به میکروبیوم خاک در افزایش حساسیت بالا افزایش می ییدما تیحساسضریب  دارای

ترین عوامل نیز در میان مهم شوریها نشان داد که متغیرهای افزون بر این، تحلیل اهمیت ویژگی .تنفس میکروبی به گرمایش تأکید دارد
یمیایی خاک در تنظیم پاسخ شهای فیزیکی و راستایی با مطالعات پیشین، بر اهمیت ویژگیها، ضمن همشده قرار دارند. این یافتهشناسایی

 .تنفسی میکروبی به تغییرات دمایی تأکید دارند

    

 
، (b)، غنای قارچی (a)از گلکوز  دهد. تنفس حاصلنشان می SHAPهای مهم را بر اساس تحلیل نمودارهای وابستگی که سهم ویژگی. 3شکل 

 (c)شوری خاک 

 بحث
های فوق تصادفی و درخت های ترکیبی مانندویژه الگوریتمهای یادگیری ماشین، بهآمده در این پژوهش نشان داد که مدلدستنتایج به

 (Saez-Sandino et al., 2023) ها با مطالعهدارند. این یافته ییدما تیحساس بیضر بینیبالایی در پیشتوانایی  شدهتقویت گرادیان بهینه
های نشان دادند که ویژگی ضریب حساسیت دمایی های میانیو حذف داده حیتوض قابل یمصنوع هوشها با استفاده ازآن .راستا استهم

ضریب  حاضر، با حفظ کل طیف دارند. در پژوهش ضریب حساسیت دمایی بینیمهمی در پیشمیکروبی مانند تنوع باکتریایی و قارچی نقش 
، واقع بینی قرار دارند. درترین عوامل پیش)شامل مقادیر میانی(، نیز مشخص شد که متغیرهای میکروبی در میان مهم حساسیت دمایی

ضریب حساسیت  پذیرتر از دینامیکتر و تعمیمانست تصویری جامعها، تول طیف دادهکلاسه این پژوهش، با در نظر گرفتن کرویکرد سه
ای متغیرها را نیز تنها موجب شفافیت مدل شد، بلکه امکان تحلیل رفتار آستانهنه SHAP گیری از روشارائه دهد. همچنین، بهره  دمایی

های دهنده تعامل چندعاملی میان ویژگیکه نشان بینی داشتندنیز سهم بالایی در پیش pH افزون بر این، عواملی مانند .فراهم کرد
  .فیزیکوشیمیایی و زیستی است

 هاتمیالگور نیا ییتوانا به توانیم را میو درخت تصم یگیهمسا نیترکینزد مانند ترساده یهامدل به نسبت یبیترک یهامدل یبرتر
 یهامدل چرا دهدیم حیتوض موضوع نیا (Breiman, 2001; Geurts et al., 2006). داد نسبت انسیوار کاهش و درخت نیچند بیترک در
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 و یسازمنظم یهازمیمکان لیبه دلشده  نهیبه انیگراد تیتقو مدل نیهمچن. دادند نشان یترنییپا دقت حاضر پژوهش در ترساده
 (Chen & Guestrin, 2016). کند نییتب هامدل ریسا از بهتر را داده دهیچیپ یساختارها توانست یجیتدر یسازنهیبه

بیشترین  نشان داد که سه ویژگی کلیدی شامل تنفس میکروبی القاشده با گلوکز، غنای قارچی و شوری خاک SHAP تحلیل مبتنی بر
و  SHAP افزایش مقدارصورت یکنواخت با به افزایش تنفس میکروبی .کنندایفا می  ضریب حساسیت دمایی بندی سطوحنقش را در طبقه

نشان  نیز (Saez-Sandino et al., 2023) بالا همراه بود.  ضریب حساسیت دمایی ها در طبقهدر نتیجه با احتمال بالاتر قرار گرفتن نمونه
 (Meyer et al., 2018) همچنینشود. تر، منجر به افزایش حساسیت تنفسی خاک میویژه در مناطق گرمدادند افزایش فعالیت میکروبی، به

 .کنندایفا می ضریب حساسیت دمایی های تنفسی نقش کلیدی در تبیین واریانسکه شاخصند نیز تأکید کرد

ارچی با ق  zOTUs ترین متغیرها توسط مدل شناسایی شد. افزایش تعدادعنوان یکی از مهمنیز به (Richness_fungi) غنای قارچی
 هایای که با یافتهدهنده نقش مهم تنوع قارچی در تنظیم نرخ تنفس خاک است. نتیجهموضوع نشانهمراه بود؛ این  SHAP افزایش مقدار

(Crowther et al., 2019) را  ضریب حساسیت دمایی ها باویژه قارچها نیز ارتباط مستقیم ترکیب جامعه میکروبی بهمطابقت دارد و آن
 تحت خاک کربن یداریپا در گر،ید یکروبیم یهاگروه از یاریبس از شیب ها،قارچ که دهدیم نشان هاافتهی ییهمگرا نیا .گزارش کردند

 .دارند نقش میاقل رییتغ طیشرا
ای خاص افزایش شوری تا محدوده، SHAP ای شوری خاک بود. طبق تحلیلتوجه پژوهش حاضر، رفتار آستانههای قابلیکی از یافته

 همراه بود، اما در مقادیر بالاتر، اثر شوری معکوس شد و ضریب حساسیت دمایی زیمنس بر متر( با افزایشدسی 2تا  0٫5)تقریباً بین 

های فیزیولوژیکی ناشی از شوری بالا بر فعالیت میکروبی است. کاهش یافت. این رفتار احتمالاً ناشی از محدودیت ضریب حساسیت دمایی
  .شود، هماهنگ استکه نشان دادند تنفس میکروبی در شرایط شوری بالا مهار می (Rolnick et al., 2022) این یافته با مطالعه

(. Cascio et al., 2016; Ahsan et al., 2021)روی پارامتر حساسیت میکروبی به دما بود  pHدهنده اثر همچنین نتایج مدل نشان

  ضریب حساسیت دمایی کند و در نتیجهای برای رشد و فعالیت میکروبی فراهم میشرایط بهینه (5/7تا  5/6)بازه  خنثی pHنیز نشان دادند 

 . دهدرا افزایش می
هوش  یهاروش و یبیترک یهاو استفاده همزمان از مدل ضریب حساسیت دمایی یهاداده کامل فیط یریکارگبه با پژوهش نیا

  (Saez-Sandino et al.,2023)پژوهش برخلاف که است آن در یاصل ینوآور. است ترجامع نیشی، نسبت به مطالعات پمصنوعی قابل توضیح

 کربن چرخه ینیبشیپ یهامدل توسعه در تواندیم کردیرو نیا. شد فراهم رتریپذمیتعم ریتفس امکان نیبنابرا و نشدند حذف یانیم یهاداده
 .باشد داشته یمؤثر نقش یمیاقل یهایگذاراستیس و یجهان

 گیری و پیشنهادنتیجه
توانست بینشی دقیق از عوامل مؤثر ر پذیهای یادگیری ماشین و رویکردهای هوش مصنوعی توضیحگیری از الگوریتماین مطالعه با بهره

ز جمله تنفس های میکروبی، فیزیکی و شیمیایی اها نشان داد که ترکیبی از ویژگیارائه دهد. یافته بر حساسیت تنفس میکروبی خاک به دما
 SHAP های مبتنی برکنند. تحلیلایفا می  ضریب حساسیت دمایی بندیالقاشده با گلوکز، غنای قارچی و شوری، بیشترین نقش را در طبقه

قابل کته نای مانند اثر شوری را آشکار ساختند. سازی نحوه تأثیر متغیرها بر خروجی مدل کمک کرده و روابط غیرخطی یا آستانهبه شفاف
فقط از  کلاسه بود، در حالی که  مطالعات پیشینصورت سهبه  ضریب حساسیت دمایی های کاملتوجه در این پژوهش، استفاده از داده

شود در پیشنهاد می تر شدبینانهاند. این رویکرد جامع موجب افزایش توان تعمیم مدل و ارائه تحلیلی واقعمقادیر افراطی استفاده کرده
ها، ظرفیت نگهداری آب، و هدایت هیدرولیکی نیز به مدل افزوده شود آتی، متغیرهای فیزیکی و هیدرولیکی نظیر پایداری خاکدانه مطالعات

ای برای بررسی های داده بومی و ناحیهکارگیری پایگاهبههمچنین  .دست آیدتری از عملکرد خاک در مواجهه با گرمایش بهتا تصویر کامل
 .گذاری بهتر در حوزه کشاورزی و مدیریت خاک کمک کندتواند به سیاستمی  ضریب حساسیت دمایی ای درهای منطقهتر تفاوتدقیق

های تواند در طراحی سیاستهای اقلیمی و چرخه کربن جهانی، میبا مدل ضریب حساسیت دمایی بینیهای پیش، ترکیب مدلدر انتها
 .اقلیمی مؤثر نقش ایفا کند

 "رض منافع بین نویسندگان وجود نداردهیچگونه تعا"
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