University of TehranIranian Journal of Soil and Water Research2008-479X50420190823Status Investigation of the Marvdasht- Kharameh Water Resources Using Sustainability Analysis IndicatorsStatus Investigation of the Marvdasht- Kharameh Water Resources Using Sustainability Analysis Indicators8979097250010.22059/ijswr.2018.260428.667950FAOmidRajaDepartment of Irrigation and Reproduction, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran0000-0002-4315-8663MasoudParsinejadAssociate Professor Department of Irrigation and Reproduction Engineering, College of Agriculture and Natural Resources, University of Tehran, KarajTeymorSohrabiProfessor Respectively, Department of Irrigation and Reproduction Engineering, College of Agriculture and Natural Resources, University of Tehran.KhaledAhmadaaliAssistant professor of arid and mountain regions, Faculty of Natural Resources, College of Agriculture and Natural Resources, University of Tehran.Journal Article20180619In most countries, agricultural sector is the main user of water resources (surface and ground water). The process of exploitation of water resources to explain the sustainability and continuity of exploitation in each region, especially in arid and semi-arid areas, which is faced with the shortage and severe competition of water resources use in different sectors is necessary. The purpose of this study was to investigate the status of water resources in the Marvdasht-Kharameh range (covered by two modern irrigation networks in Dorodzan and traditional Korbal) in Fars province during the statistical period of 2006-2016, based on the stability analysis indexes proportional to the volume of water allocated in comparison with excessive withdrawal of groundwater resources, as well as the relationship between rainfall and the amount of variations in the level of stagnation. For this purpose, by using Dorodzan weather data and Persepolis stations, as well as Kheirabad, Pulkhan and Zarghamabad hydrometric stations and the irrigation networks data, the available water resources in terms of surface and groundwater were estimated. According to the average level of stagnation and changes in aquifer volume, excess water harvesting were calculated in two areas covered by Dorodzan and Korbal irrigation networks. The amount of runoff coefficient in plain, altitudes and total range was calculated to be 6.9, 14.1 and 9.9 percent, respectively. The average amount of excess withdraw in the area covered by two modern Dorodzan and Korbal networks is 96.33 and 16.2 MCM /year, which according to available water resources is 8.2% and 5.2%, respectively. The Average standardized precipitation-evaporation-transpiration12-month SPEI index for Droodzan and Persepolis stations was calculated to be -0.33 and -0.43, indicating the mild drought in the area and during the proposed time period, and this is in good agreement with the Water table drawdown. The result of linear regression between the independent variable of rainfall and the dependent variable of the average water table changes showed a significant increasing linear relationship (<em>p</em> < 0.001) with R<sup>2</sup> = 0.95 and RMSE = 0.99. This result for the independent variable of rainfall with the dependent variable of water allocation volume, indicated an incremental linear relationship (P = 0.110), with R<sup>2</sup> equal to 0.29 and RMSE equal to 245.6. Indicators of water resource sustainability analysis, such as Falcon Mark (FI), United Nation (UN) and Water Tension Index (WSI), were calculated for the region. The values of the Indicators of water resource sustainability analysis including Falcon Mark (FI), United Nation (UN) and Water Tension Index (WSI) were 1983 cubic meters per person, 210 percent and 2.93, respectively. By comparing the values of these indexes, it was found that based on the FI index, the area is close to tension. The UN and WSI indicators are indicative of the fact that the study area is under severe crisis and excessive use of water resources and the pattern of exploitation of water resources should be managed in order to eliminate surplus withdrawals and sustainability of water resources.In most countries, agricultural sector is the main user of water resources (surface and ground water). The process of exploitation of water resources to explain the sustainability and continuity of exploitation in each region, especially in arid and semi-arid areas, which is faced with the shortage and severe competition of water resources use in different sectors is necessary. The purpose of this study was to investigate the status of water resources in the Marvdasht-Kharameh range (covered by two modern irrigation networks in Dorodzan and traditional Korbal) in Fars province during the statistical period of 2006-2016, based on the stability analysis indexes proportional to the volume of water allocated in comparison with excessive withdrawal of groundwater resources, as well as the relationship between rainfall and the amount of variations in the level of stagnation. For this purpose, by using Dorodzan weather data and Persepolis stations, as well as Kheirabad, Pulkhan and Zarghamabad hydrometric stations and the irrigation networks data, the available water resources in terms of surface and groundwater were estimated. According to the average level of stagnation and changes in aquifer volume, excess water harvesting were calculated in two areas covered by Dorodzan and Korbal irrigation networks. The amount of runoff coefficient in plain, altitudes and total range was calculated to be 6.9, 14.1 and 9.9 percent, respectively. The average amount of excess withdraw in the area covered by two modern Dorodzan and Korbal networks is 96.33 and 16.2 MCM /year, which according to available water resources is 8.2% and 5.2%, respectively. The Average standardized precipitation-evaporation-transpiration12-month SPEI index for Droodzan and Persepolis stations was calculated to be -0.33 and -0.43, indicating the mild drought in the area and during the proposed time period, and this is in good agreement with the Water table drawdown. The result of linear regression between the independent variable of rainfall and the dependent variable of the average water table changes showed a significant increasing linear relationship (<em>p</em> < 0.001) with R<sup>2</sup> = 0.95 and RMSE = 0.99. This result for the independent variable of rainfall with the dependent variable of water allocation volume, indicated an incremental linear relationship (P = 0.110), with R<sup>2</sup> equal to 0.29 and RMSE equal to 245.6. Indicators of water resource sustainability analysis, such as Falcon Mark (FI), United Nation (UN) and Water Tension Index (WSI), were calculated for the region. The values of the Indicators of water resource sustainability analysis including Falcon Mark (FI), United Nation (UN) and Water Tension Index (WSI) were 1983 cubic meters per person, 210 percent and 2.93, respectively. By comparing the values of these indexes, it was found that based on the FI index, the area is close to tension. The UN and WSI indicators are indicative of the fact that the study area is under severe crisis and excessive use of water resources and the pattern of exploitation of water resources should be managed in order to eliminate surplus withdrawals and sustainability of water resources.https://ijswr.ut.ac.ir/article_72500_0873a5476563da2a2d080b02eed29774.pdf